

UNIT IV

MISCELLANEOUS TECHNIQUES AND SERVICE REQUIREMENTS

Appliances - Discharge and Waste Systems

1. Introduction

- **Definition**: Discharge and waste systems are networks of pipes and fixtures designed to transport waste and wastewater from appliances to the sewer or septic system.
- **Purpose**: To ensure hygienic disposal of wastewater, maintain sanitation, and prevent environmental contamination.

2. Types of Wastewater

- 1. Black Water: Wastewater from toilets containing fecal matter and urine.
- 2. **Grey Water**: Wastewater from sinks, showers, and washing machines.

3. Components of Discharge and Waste Systems

a. Pipes

- Types of Pipes:
 - **PVC (Polyvinyl Chloride)**: Commonly used for residential waste systems due to its lightweight and durability.
 - **HDPE** (High-Density Polyethylene): Flexible and corrosion-resistant, suitable for high-load applications.
 - **Cast Iron**: Durable but heavy, used in large buildings for its soundproofing properties.
- **Sizes**: Diameter varies depending on the application (e.g., 75-100 mm for WCs, 40-50 mm for sinks).

b. Fixtures and Appliances

- Sinks: Wastewater discharge through traps and connected to drainage pipes.
- **Toilets (WCs)**: Connected to soil pipes that discharge black water.
- Showers and Bathtubs: Discharge grey water through floor traps.

• **Dishwashers and Washing Machines**: Use dedicated discharge pipes for grey water.

c. Traps

- **Purpose**: Prevent foul odors by maintaining a water seal in the pipe.
- Types of Traps:
 - **P-Trap**: Commonly used under sinks.
 - **S-Trap**: Used in floor connections.
 - **Bottle Trap**: Compact design, used in washbasins.

d. Ventilation Systems

- **Vent Pipes**: Allow air circulation to prevent vacuum formation and maintain proper flow in the drainage system.
- **Stack Vent**: Installed at the top of the vertical pipe (soil stack) to provide ventilation.

e. Inspection Chambers

- **Purpose**: Provide access for cleaning and maintenance.
- Location: Installed at junctions or where pipes change direction.

4. Flow Management in Discharge Systems

- 1. **Gravity Flow**: Wastewater flows naturally due to gravity; the most common method.
- 2. **Pressure Flow**: Pumps are used when gravity flow is not feasible (e.g., in basements).

Pipe Slopes:

• Ensure a proper slope (1:40 for horizontal pipes) to avoid blockages.

5. Design Considerations for Discharge Systems

- 1. **Material Selection**: Based on durability, corrosion resistance, and flow requirements.
- 2. **Pipe Layout**: Minimize bends and ensure smooth transitions.
- 3. Trap Design: Ensure proper depth of water seal (minimum 50 mm).
- 4. **Ventilation**: Adequate venting to avoid backpressure.
- 5. **Capacity Planning**: Based on appliance usage and peak loads.

6. Common Issues in Discharge Systems

- Blockages: Caused by grease, hair, or solid objects.
- **Backflow**: Occurs when wastewater flows back into the appliance, usually due to improper venting.
- Leakages: Caused by damaged pipes or loose fittings.
- **Foul Odors**: Due to dried traps or poor ventilation.

Preventive Measures:

- Regular cleaning and inspection of pipes.
- Installation of anti-backflow valves.
- Proper sealing and joint fittings.

7. Waste Disposal Systems

- Waste is categorized as **solid waste** or **liquid waste**.
- Appliances should have separate systems for waste segregation to ensure efficient treatment.

Solid Waste Disposal:

• **Garbage Disposal Units**: Grind food waste for safe discharge into wastewater systems.

Liquid Waste Disposal:

• Connected to centralized sewage or decentralized septic tanks.

8. Sustainable Practices

- Water Recycling: Reuse grey water for gardening or toilet flushing.
- **Eco-friendly Materials**: Use biodegradable or recyclable materials in system construction.
- **Efficient Appliances**: Install water-efficient devices like low-flush toilets and flow restrictors.

9. Practical Applications

- Case studies of discharge systems in residential and commercial buildings.
- Site visits to inspect drainage and waste systems.

10. Conclusion

Discharge and waste systems form the backbone of modern sanitation. Proper design, installation, and maintenance ensure effective wastewater management, environmental protection, and hygiene.