

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23EET202 / DIGITAL ELECTRONICS AND LINEAR INTEGRATED CIRCUITS II YEAR / III SEMESTER UNIT-I: OPERATIONAL AMPLIFIER

OP-AMP INVERTING / NON INVERTING

TOPIC OUTLINE

Basics of Op-Amp Inverting Op-Amp Circuits Non Inverting Op-Amp Circuits

WHAT IS AN OP-AMP?

- An Operational Amplifier (known as an "Op-Amp") is a device that is used to amplify a signal using an external power source
- Op-Amps are generally composed of:
 - Transistors, Resistors, Capacitors

IC741 – PIN DETAILS

 Leading to the advent of the modern IC which is still used even today (1967 – present)

Fairchild μ A741

NON-INVERTING OP-AMP

- Amplifies the input voltage by a constant
- Closed loop op-amp
- Voltage input connected to non-inverting input
- Voltage output connected to inverting input through a feedback resistor
- Inverting input is also connected to ground
- Non-inverting input is only determined by voltage output

NON-INVERTING OP-AMP

 $V_{o} = K(V_{+}-V_{-}) \& R_{2} = R_{f}$

R1/(R1+R2) \leftarrow Voltage Divider V_i=V_o (R₁/(R₁+R₂))

$$V_o/V_i = AcI = [1 + / (R_2 + R_1)]$$

$$V_{out} = V_{in} (1 + (R_2/R_1))$$

INVERTING OP-AMP

- Amplifies and inverts the input voltage
- Closed loop op-amp
- Non-inverting input is determined by *both* voltage input and output
- The polarity of the output voltage is opposite to that of the input voltage
- Voltage input is connected to inverting input
- Voltage output is connected to inverting input through a feedback resistor
- Non-inverting input is grounded

INVERTING OP-AMP

 $V_{\rm out}$

 $R_{\rm f}$

 $R_{\rm in}$

 $V_{\rm in} \sim \mathbf{V}$

$$V_{out} = K(V_+ - V_-)$$

Nodal equation at "a" (jn) is $O=((V_a-V_i)/R_i)) + ((V_a-V_o)/R_f))$

Since V_a =is virtual gnd = 0

 $O=((O-V_i)/R_i)) + ((O-V_o)/R_f))$ $V_o/V_i = -R_f/R_i = Acl$

$$V_{out} = -V_{in}R_f/R_{ir}$$

THANK YOU

23EET202 / Dr.R.Senthil Kumar / EEE