

SNS COLLEGE OF TECHNOLOGY

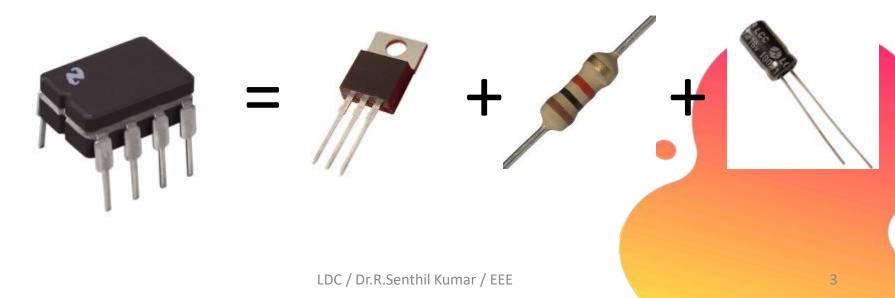
(An Autonomous Institution) COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

LINEAR AND DIGITAL CIRCUITS II YEAR / III SEMESTER UNIT-I: OPERATIONAL AMPLIFIER

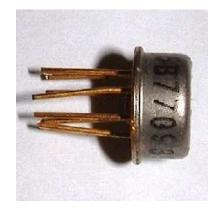
OP-AMP BASICS AND CHARACTERISTICS

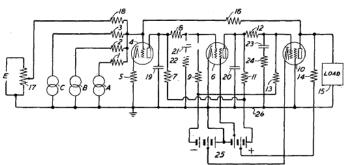
TOPIC OUTLINE


What is an Op-Amp? History Pin Details IC741 Characteristics of Ideal Op-Amps Characteristics of Real Op-Amps Basics of Op-Amp

WHAT IS AN OP-AMP?

- An Operational Amplifier (known as an "Op-Amp") is a device that is used to amplify a signal using an external power source
- Op-Amps are generally composed of:
 - Transistors, Resistors, Capacitors

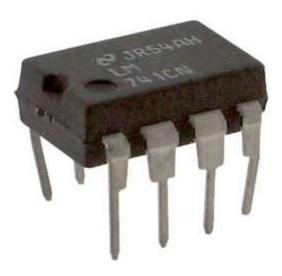

BRIEF HISTORY

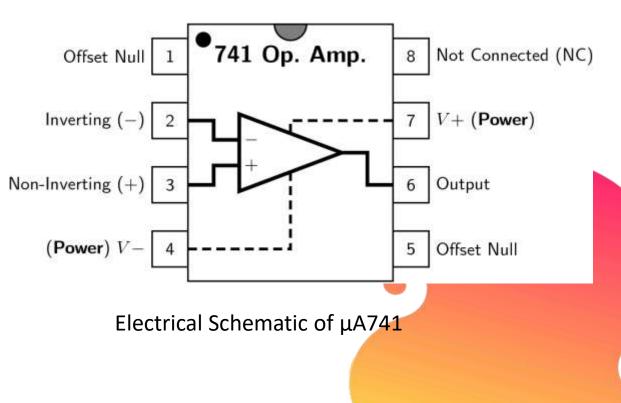


First patent for Vacuum Tube Op-Amp (1946)

• First discrete IC Op-Amps (1961)

First Commercial Op-Amp available (1953)

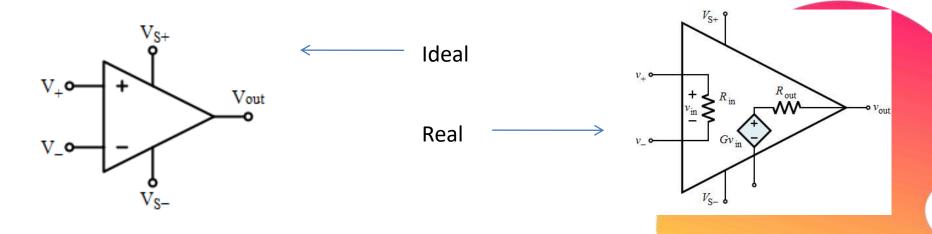

• First commercially successful Monolithic Op-Amps (1965)



IC741 – PIN DETAILS

 Leading to the advent of the modern IC which is still used even today (1967 – present)

Fairchild μ A741

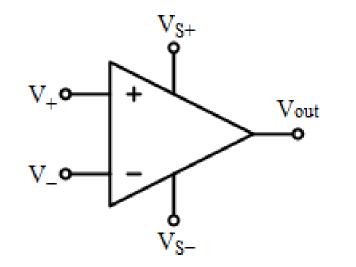

AN IDEAL OP-AMP

- Infinite voltage gain
- Infinite input impedance
- Zero output impedance
- Infinite bandwidth
- Zero input offset voltage (i.e., exactly zero out if zero in).

Parameter	Ideal Op-Amp	Real Op-Amp
Voltage Gain	∞	10 ⁵ - 10 ⁹
Gain Bandwidth (Hz)	∞	1-20 MHz
Input Resistance (Ri)	∞	10 ⁶ - 10 ¹² Ω
Output Resistance (Ro)	0	100 - 1000 Ω

BASICS OF AN OP-AMP

- An op-amp amplifies the difference of the inputs V₊ and V₋ (known as the differential input voltage)
- This is the equation for an *open loop* gain amplifier:


 $V_{out} = K(V_+ - V_-)$

- K is typically very large at around 10,000 or more for IC Op-Amps
- This equation is the basis for all the types of amps we will be discussing

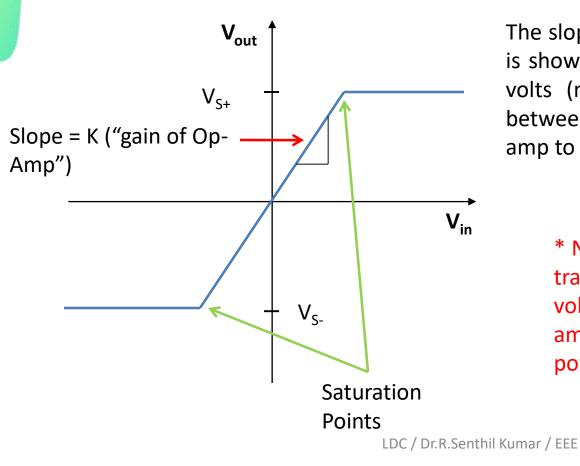
BASICS OF AN OP-AMP

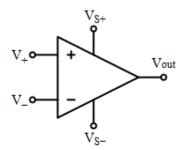
A traditional Op-Amp:

V₊ : non-inverting input
V₋ : inverting input
V_{out} : output
V_{s+} : positive power supply

 V_{s+} : positive power supply V_{s-} : negative power supply

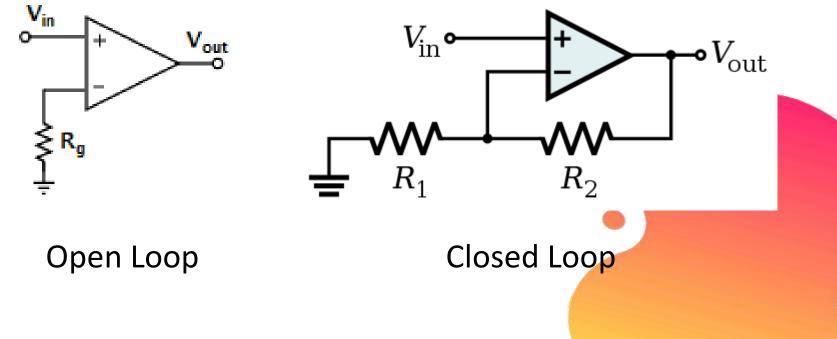
$$V_{out} = K (V_{+} - V_{-})$$


The difference between the two inputs voltages (V₊ and V₋) multiplied by the gain (K, "amplification factor") of the Op-Amp gives you the output voltage
The output voltage can only be as high as the <u>difference</u> between the power supply (V_{s+} / V_{s-}) and ground (0 Volts)



Saturation

Saturation is caused by increasing/decreasing the input voltage to cause the output voltage to equal the power supply's voltage*


The slope is normally much steeper than it is shown here. Potentially just a few millivolts (mV) of change in the difference between V_+ and V_- could cause the opamp to reach the saturation level

> * Note that saturation level of traditional Op-Amp is 80% of supply voltage with exception of CMOS opamp which has a saturation at the power supply's voltage

• A closed loop op-amp has feedback from the output to the input, an open loop op-amp does not

THANK YOU

LDC / Dr.R.Senthil Kumar / EEE