
 

ACCESSING I/O DEVICES IN SYSTEM MEMORY 

A simple arrangement to connect I/O devices to a computer is to use a single bus  

arrangement. The bus enables all the devices connected to it to exchange information.  

Typically, it consists of three sets of lines used to carry address, data, and control signals.  

Each I/O device is assigned a unique set of addresses. When the processor places a  

particular address on the address line, the device that recognizes this address responds to  

the commands issued on the control lines. The processor requests either a read or a write  

operation, and the requested data are transferred over the data lines, when I/O devices and  

the memory share the same address space, the arrangement is called memory-mapped  

I/O. 

With memory-mapped I/O, any machine instruction that can access memory can  

be used to transfer data to or from an I/O device. For example, if DATAIN is the address  

of the input buffer associated with the keyboard, the instruction  
 
 

Move DATAIN, R0  

Reads the data from DATAIN and stores them into processor register R0. Similarly, the  

instruction  

Move R0, DATAOUT  
 
 
Sends the contents of register R0 to location DATAOUT, which may be the output data  

buffer of a display unit or a printer.  

Most computer systems use memory-mapped I/O. some processors have special  

In and Out instructions to perform I/O transfers. When building a computer system based  

on these processors, the designer had the option of connecting I/O devices to use the  

special I/O address space or simply incorporating them as part of the memory address  

space. The I/O devices examine the low-order bits of the address bus to determine  

whether they should respond.  



The hardware required to connect an I/O device to the bus. The address decoder  

enables the device to recognize its address when this address appears on the address lines.  

The data register holds the data being transferred to or from the processor. The status  

register contains information relevant to the operation of the I/O device. Both the data  

and status registers are connected to the data bus and assigned unique addresses. The  

address decoder, the data and status registers, and the control circuitry required to  

coordinate I/O transfers constitute the device’s interface circuit.  

I/O devices operate at speeds that are vastly different from that of the processor.  

When a human operator is entering characters at a keyboard, the processor is capable of  

executing millions of instructions between successive character entries. An instruction  

that reads a character from the keyboard should be executed only when a character is  

available in the input buffer of the keyboard interface. Also, we must make sure that an  

input character is read only once.  

This example illustrates program-controlled I/O, in which the processor  

repeatedly checks a status flag to achieve the required synchronization between the  

processor and an input or output device. We say that the processor polls the device. There  

are two other commonly used mechanisms for implementing I/O operations: interrupts  

and direct memory access. In the case of interrupts, synchronization is achieved by  

having the I/O device send a special signal over the bus whenever it is ready for a data  

transfer operation. Direct memory access is a technique used for high-speed I/O devices.  

It involves having the device interface transfer data directly to or from the memory,  

without continuous involvement by the processor.  

The routine executed in response to an interrupt request is called the interrupt- 

service routine, which is the PRINT routine in our example. Interrupts bear considerable  

resemblance to subroutine calls. Assume that an interrupt request arrives during  

execution of instruction i in figure 1 
 
 
 
 
 
 



 
Program 1 Program 2  

COMPUTER routine PRINT routine  

 
 
 
 
 

1 
 
 

2  

....  

Interrupt i  

Occurs i+1 

here  

… 

M  

 
 
 

Figure 1. Transfer of control through the use of interrupts  
 
 

The processor first completes execution of instruction i. Then, it loads the  

program counter with the address of the first instruction of the interrupt-service routine.  

For the time being, let us assume that this address is hardwired in the processor. After  

execution of the interrupt-service routine, the processor has to come back to instruction  

i +1. Therefore, when an interrupt occurs, the current contents of the PC, which point to  

instruction i+1, must be put in temporary storage in a known location. A Return-from- 

interrupt instruction at the end of the interrupt-service routine reloads the PC from the  

temporary storage location, causing execution to resume at instruction i +1. In many  

processors, the return address is saved on the processor stack.  

We should note that as part of handling interrupts, the processor must inform the  

device that its request has been recognized so that it may remove its interrupt-request  



signal. This may be accomplished by means of a special control signal on the bus. An  

interrupt-acknowledge signal. The execution of an instruction in the interrupt-service  

routine that accesses a status or data register in the device interface implicitly informs  

that device that its interrupt request has been recognized.  

So far, treatment of an interrupt-service routine is very similar to that of a  

subroutine. An important departure from this similarity should be noted. A subroutine  

performs a function required by the program from which it is called. However, the  

interrupt-service routine may not have anything in common with the program being  

executed at the time the interrupt request is received. In fact, the two programs often  

belong to different users. Therefore, before starting execution of the interrupt-service  

routine, any information that may be altered during the execution of that routine must be  

saved. This information must be restored before execution of the interrupt program is  

resumed. In this way, the original program can continue execution without being affected  

in any way by the interruption, except for the time delay. The information that needs to  

be saved and restored typically includes the condition code flags and the contents of any  

registers used by both the interrupted program and the interrupt-service routine.  

The task of saving and restoring information can be done automatically by the  

processor or by program instructions. Most modern processors save only the minimum  

amount of information needed to maintain the registers involves memory transfers that  

increase the total execution time, and hence represent execution overhead. Saving  

registers also increase the delay between the time an interrupt request is received and the  

start of execution of the interrupt-service routine. This delay is called interrupt latency.  

 

Parithy
Typewritten Text
Source : http://elearningatria.files.wordpress.com/2013/10/cse-iv-computer-organization-10cs46-notes.pdf




