

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35.

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai.

DEPARTMENT OF AUTOMOBILE ENGINEERING

COURSE NAME : 23AUB201 – AUTOMOTIVE ELECTRICAL DRIVES AND CONTROLS

II YEAR / III SEMESTER

Unit 5 – Electric Motor Drives

Topic : Permanent Magnet Synchronous Motor and control and Switched Reluctance Motors and control

- A Permanent Magnet Synchronous Motor (PMSM) is a high-performance motor where permanent magnets are embedded in the rotor to generate a constant magnetic field.
- The stator windings produce a rotating magnetic field when AC power is applied, and the rotor synchronizes with this field, resulting in high efficiency and precise speed control.

- Core: Made of laminated silicon steel to minimize eddy current losses. Contains slots for holding stator windings.
- Windings: Three-phase windings are arranged in the slots to produce a
 rotating magnetic field when AC is supplied. Distributed or concentrated
 winding configurations can be used.
- * Rotor
 - Made of high-strength materials like neodymium-iron-boron (NdFeB) or samarium-cobalt.
 - Provide a constant magnetic field without requiring an external power source.

25/11/2024

The gap between the stator and rotor allows the magnetic field to interact with the rotor.

Shaft

> Transfers mechanical power from the rotor to the load.

Cooling System

May include fins, fans, or liquid cooling systems to dissipate heat generated during operation.

- PMSM works on the principle of synchronous speed, where the rotor rotates at the same speed as the magnetic field generated by the stator.
- ✤ A three-phase AC voltage is supplied to the stator windings.
- This generates a rotating magnetic field (RMF) within the stator.
- The magnetic field of the stator interacts with the magnetic field of the rotor.
- The rotor aligns itself with the stator's rotating magnetic field to maintain synchronization.
- The rotor rotates at a speed directly proportional to the supply frequency

- Torque is produced due to the magnetic attraction between the stator's RMF and the rotor's permanent magnets.
- The torque is smooth and ripple-free, ensuring efficient operation.
- Speed is adjusted by changing the supply frequency using an inverter.
- Torque is controlled by varying the current in the stator windings.

ADVANTAGES

- Compact and Lightweight: Permanent magnets allow a smaller and lighter rotor compared to induction motors.
- High Performance: High torque and efficiency due to direct interaction between the rotor and stator fields.

APPLICATION

- Selectric Vehicles (EVS): Compact size and high torque are ideal for drivetrain systems.
- * Industrial Machines: Used in CNC machines and robotics for precision control.
- **Renewable Energy**: Drives for wind turbines and generators.

CONTROL METHOD

Field-Oriented Control (FOC):

Decouples torque and flux control, enabling independent control of these components.

> Improves efficiency and dynamic response.

Direct Torque Control (DTC):

- > Directly controls torque and flux without complex calculations.
- Provides fast dynamic response but may result in higher torque ripple.

CONTROL METHOD - PULSE WIDTH MODULATION

* **Position and Speed Sensors**: Encoders or resolvers detect rotor position and

speed, enabling accurate control.

- Inverter: Converts DC power to variable frequency AC power, controlling motor speed and torque.
- Uses Pulse Width Modulation (PWM) for efficient power delivery.

- The Switched Reluctance Motor (SRM) is a type of synchronous motor that operates based on the principle of variable reluctance.
- It does not use permanent magnets or induced currents in the rotor, making it robust, simple, and cost-effective.
- Torque is produced through the alignment of the rotor poles with the energized stator poles.

- Core: Made of laminated ferromagnetic material to minimize eddy current losses.
- Windings: Each stator pole has concentrated windings, which are separately energized by a power electronic drive.
- Number of Poles: Typically higher than the rotor poles, enabling precise control and reducing torque ripple.

- > **Construction**: A salient-pole design made of laminated ferromagnetic material.
- No Windings or Magnets: The rotor is a simple structure without windings or permanent magnets, reducing cost and maintenance.

✤ Air Gap:

The gap between the rotor and stator, kept small to improve magnetic efficiency.

Power Converter:

> A specialized electronic drive system is used to sequentially energize the stator

windings. 25/11/2024 23AUB201 – Automotive Electrical Drives and Controls / Lt. P.Leon Dharmadurai (AP/ AUTO / SNSCT)

- ✤ A specific phase of the stator winding is energized, creating a magnetic field.
- The rotor aligns itself with the energized stator pole to minimize reluctance.
- The stator poles are energized sequentially in a particular order using a power electronic drive.
- This creates a rotating magnetic field, causing the rotor to follow and produce continuous rotation.
- The rotor speed synchronizes with the switching frequency of the stator phases.
- Torque is generated by the tendency of the rotor to align with the energized stator poles.

The amount of torque depends on the inductance difference between aligned and unaligned positions.

ADVANTAGES

- ✤ High reliability due to the absence of magnets and rotor windings.
- Cost-effective design with simple manufacturing.
- Excellent performance in harsh environments.
- ✤ High torque at low speeds.

APPLICATION

- **Contract Sectors Cevs**: Suitable for heavy-duty EVs due to its ruggedness.
- Industrial Drives: Widely used in conveyors, compressors, and pumps.
- **Wind Energy**: Acts as a generator in wind turbines.
- Household Appliances: Used in washing machines and vacuum cleaners for efficient operation

CONTROL METHOD

Control Algorithms:

- Field-Oriented Control (FOC): Used for precise torque and speed control.
- Direct Torque Control (DTC): Offers fast dynamic response without position

sensors.

* Feedback Sensors:

- > Encoders or resolvers for rotor position.
- ➤ Hall sensors for speed and direction.

CONTROL METHOD

***** Power Electronics:

- Inverters convert DC to AC for motor operation.
- > High-frequency switching ensures smooth performance.

***** Thermal Management:

Advanced cooling techniques are essential due to the motor's high power density.

* Fault Detection:

Built-in systems monitor parameters like current, voltage, and temperature to detect and mitigate faults

THANK YOU !!!