

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Ms.A.Indhuja

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai

Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech&B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

UNIT III

OBJECT AND CLASSES

 FILES IN JAVA

File handling is an important part of any application.

Java has several methods for creating, reading, updating, and deleting files.

 Java File Handling

The File class from the java.io package, allows us to work with files.

To use the File class, create an object of the class, and specify the filename or

directory name:

Example

import java.io.File; // Import the File class

File myObj = new File("filename.txt"); // Specify the filename

.

The File class has many useful methods for creating and getting information about

files. For example:

Method Type Description

canRead() Boolean Tests whether the file is readable or not

canWrite() Boolean Tests whether the file is writable or not

createNewFile() Boolean Creates an empty file

delete() Boolean Deletes a file

exists() Boolean Tests whether the file exists

getName() String Returns the name of the file

getAbsolutePath() String Returns the absolute pathname of the file

length() Long Returns the size of the file in bytes

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Ms.A.Indhuja

list() String[] Returns an array of the files in the directory

mkdir() Boolean Creates a directory

Create a File

To create a file in Java, you can use the createNewFile() method. This method

returns a boolean value: true if the file was successfully created, and false if the file

already exists. Note that the method is enclosed in a try...catch block. This is

necessary because it throws an IOException if an error occurs (if the file cannot be

created for some reason):

import java.io.File; // Import the File class

import java.io.IOException; // Import the IOException class to handle errors

public class CreateFile {

 public static void main(String[] args) {

 try {

 File myObj = new File("filename.txt");

 if (myObj.createNewFile()) {

 System.out.println("File created: " + myObj.getName());

 } else {

 System.out.println("File already exists.");

 }

 } catch (IOException e) {

 System.out.println("An error occurred.");

 e.printStackTrace();

 }

 }

}

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Ms.A.Indhuja

The output will be:

File created: filename.txt

To create a file in a specific directory (requires permission), specify the path of the

file and use double backslashes to escape the "\" character (for Windows). On Mac

and Linux you can just write the path, like: /Users/name/filename.txt

Example

File myObj = new File("C:\\Users\\MyName\\filename.txt");

Write To a File

In the following example, we use the FileWriter class together with

its write() method to write some text to the file we created in the example above.

Note that when you are done writing to the file, you should close it with

the close() method:

Example

import java.io.FileWriter; // Import the FileWriter class

import java.io.IOException; // Import the IOException class to handle errors

public class WriteToFile {

 public static void main(String[] args) {

 try {

 FileWriter myWriter = new FileWriter("filename.txt");

 myWriter.write("Files in Java might be tricky, but it is fun enough!");

 myWriter.close();

 System.out.println("Successfully wrote to the file.");

 } catch (IOException e) {

 System.out.println("An error occurred.");

 e.printStackTrace();

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Ms.A.Indhuja

 }

 }

}

The output will be:

Successfully wrote to the file.

Read a File

In the previous chapter, you learned how to create and write to a file.

In the following example, we use the Scanner class to read the contents of the text

file we created in the previous chapter:

ExampleGet your own Java Server

import java.io.File; // Import the File class

import java.io.FileNotFoundException; // Import this class to handle errors

import java.util.Scanner; // Import the Scanner class to read text files

public class ReadFile {

 public static void main(String[] args) {

 try {

 File myObj = new File("filename.txt");

 Scanner myReader = new Scanner(myObj);

 while (myReader.hasNextLine()) {

 String data = myReader.nextLine();

 System.out.println(data);

 }

 myReader.close();

 } catch (FileNotFoundException e) {

https://www.w3schools.com/java/java_server.asp

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Ms.A.Indhuja

 System.out.println("An error occurred.");

 e.printStackTrace();

 }

 }

}

The output will be:

Files in Java might be tricky, but it is fun enough!

Get File Information

To get more information about a file, use any of the File methods:

Example

import java.io.File; // Import the File class

public class GetFileInfo {

 public static void main(String[] args) {

 File myObj = new File("filename.txt");

 if (myObj.exists()) {

 System.out.println("File name: " + myObj.getName());

 System.out.println("Absolute path: " + myObj.getAbsolutePath());

 System.out.println("Writeable: " + myObj.canWrite());

 System.out.println("Readable " + myObj.canRead());

 System.out.println("File size in bytes " + myObj.length());

 } else {

 System.out.println("The file does not exist.");

 }

 }

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Ms.A.Indhuja

}

The output will be:

File name: filename.txt

Absolute path: C:\Users\MyName\filename.txt

Writeable: true

Readable: true

File size in bytes: 0

Delete a File

To delete a file in Java, use the delete() method:

ExampleGet your own Java Server

import java.io.File; // Import the File class

public class DeleteFile {

 public static void main(String[] args) {

 File myObj = new File("filename.txt");

 if (myObj.delete()) {

 System.out.println("Deleted the file: " + myObj.getName());

 } else {

 System.out.println("Failed to delete the file.");

 }

 }

}

The output will be:

Deleted the file: filename.txt

Delete a Folder

You can also delete a folder. However, it must be empty:

https://www.w3schools.com/java/java_server.asp

UNIT III 23CSP205-OJECT ORIENTED PROGRAMMING USING JAVA Ms.A.Indhuja

Example

import java.io.File;

public class DeleteFolder {

 public static void main(String[] args) {

 File myObj = new File("C:\\Users\\MyName\\Test");

 if (myObj.delete()) {

 System.out.println("Deleted the folder: " + myObj.getName());

 } else {

 System.out.println("Failed to delete the folder.");

 }

 }

}

The output will be:

Deleted the folder: Test

	COIMBATORE-641 035, TAMIL NADU
	UNIT III
	OBJECT AND CLASSES
	FILES IN JAVA
	Java File Handling
	Example

	Create a File

	File created: filename.txt
	Example
	Write To a File
	Example

	Successfully wrote to the file.
	Read a File
	ExampleGet your own Java Server

	Files in Java might be tricky, but it is fun enough!
	Get File Information
	Example

	File name: filename.txt Absolute path: C:\Users\MyName\filename.txt Writeable: true Readable: true File size in bytes: 0
	Delete a File
	ExampleGet your own Java Server

	Deleted the file: filename.txt
	Delete a Folder
	Example

	Deleted the folder: Test

