

SNS COLLEGE OF TECHNOLOGY An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING 23ECB201–DIGITAL SYSTEMS DESIGN

II YEAR/ III SEMESTER

UNIT 5-PROGRAMMABLE LOGIC DEVICES AND LOGIC FAMILIES

TOPIC - Implementation Of Combinational Logic Using

PROM, PLA, PAL

• Let us see the implementation of a combinational circuit using PAL with the help of examples.

Examples for Understanding

Ex. 9.4.1 Implement the following Boolean functions using PAL.

w (A, B, C,D) = $\sum m (0, 2, 6, 7, 8, 9, 12, 13),$

 $x (A,B,C,D) = \sum m (0, 2, 6, 7, 8, 9, 12, 13, 14)$

 $y(A,B,C,D) = \sum m(2, 3, 8, 9, 10, 12, 13), z(A,B,C,D) = \sum m(1, 3, 4, 6, 9, 12, 14)$

Step 1: Simplify the four functions

X = W + BCD'

Note that function x has four product terms. Three of them are equal to w. Therefore we can write

using PAL

Step 2 : Implementation

In the last section we have seen the PLA program table. The program table for PAL is similar to PLA program table. Table 9.4.1 shows PAL program table with product terms, AND inputs and outputs.

			-			
	Product term	AN	D Inp	outs		Out
Α		В	С	D	w	
0	1	0	_	0	_	$w = \overline{A} \overline{B} \overline{D} +$
0	2	1	1	-	·	
1	3	-	0	_	_	
9 <u>7-1</u>	4	~ <u> </u>	<u></u>	<u></u>	1	x = w
<u></u>	5	1	1	0	~ <u> </u>	
-	6	-	-	-	-	
0	7	0	1		<u>к</u> —	$y = \overline{A} \overline{B} C +$
	8	0	1	0		
1	9		0	_		
0	10	0	-	1		$z = \overline{A} \overline{B} D +$
—	11	0	0	1		
	12	1	<u> </u>	0	<u></u>	

Table 9.4.1 PAL program table

put	s		
Ā	BC+	AC	5
+ B	CD		
BC	C D +	AC	;
BC	5 D+	вD	

IMPLEMENTATION OF COMBINATIONAL LOGIC/ DIGITAL SYSTEMS DESIGN/PRIYANKA G-713523EC100, SANCHAI KRISHNA.M-713523EC106/II-ECE-C/SNSCT

Design BCD to Excess-3 converter using PAL.

Step 1 : Derive the truth table of BCD to Excess-3 converter

D 1 1		BCD	code		Excess-3 code			
Decimal	B ₃	B ₂	B ₁	в	E3	E ₂	E ₁	E ₀
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

I FUT TADIE TO BUD TO EXCESS

	1.54	28. C.	1.00	0.016	10.0	1.1.1	10.00	2.22
3	~	\sim	m	٩.	\mathbf{n}	P 1	r٨	r.
	ميا	ື		¥.	50		150	ж.

Simplify the Boolean functions for Excess-3 code outputs.

Fig. 9.4.4 K-map simplification

IMPLEMENTATION OF COMBINATIONAL LOGIC/ DIGITAL SYSTEMS DESIGN/PRIYANKA G-713523EC100, SANCHAI KRISHNA.M-713523EC106/II-ECE-C/SNSCT

Step 3 : Implementation

 $B_2 \overline{B}_1$

Pr	oduct terms		Inp	outs	-		Out	F
		B ₃	B ₂	B ₁	B ₀	E3	E2	
	1	1	-	3 —	-	1	-	I
	2	-	1	-	1	1	-	
	3	8 <u>–</u>	1	1	-	1	-	
i l	4		1	0	0	3 14	1	
	5	-	0	-	1	. 	1	
	6	-	0	1	-	-	1	
	7	8 <u>–</u>	<u> </u>	0	0	22	<u>-</u>	
	8	-	-	1	1	-	-	
	9	-	-	1	0	-	-	
						Т	Т	Î

Fig. 9.4.5 Logic diagram

IMPLEMENTATION OF COMBINATIONAL LOGIC/ DIGITAL SYSTEMS DESIGN/PRIYANKA G-713523EC100, SANCHAI KRISHNA.M-713523EC106/II-ECE-C/SNSCT

Step 1: Truth Table

INPUT	(BCD C	ODE)		OUTPUT (EXCESS-3 CODE)				
B ₃	B ₂	B ₁	B ₀	E ₃	E ₂	E ₁	E ₀	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	
1	0	1	0	X	X	X	X	

Table 1: BCD to Excess-3 Code Conversion

IMPLEMENTATION OF COMBINATIONAL LOGIC/ DIGITAL SYSTEMS DESIGN/PRIYANKA G-713523EC100, SANCHAI KRISHNA.M-713523EC106/II-ECE-C/SNSCT

1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	Х
1	1	0	1	X	Х	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

IMPLEMENTATION OF COMBINATIONAL LOGIC/ DIGITAL SYSTEMS DESIGN/PRIYANKA G-713523EC100, SANCHAI KRISHNA.M-713523EC106/II-ECE-C/SNSCT

Step 2: K-Map

IMPLEMENTATION OF COMBINATIONAL LOGIC/ DIGITAL SYSTEMS DESIGN/PRIYANKA G-713523EC100, SANCHAI KRISHNA.M-713523EC106/II-ECE-C/SNSCT

00	01	11	10
0	1	X	0
1	0	X	1
1	0	X	X
1	0	X	X

 $E0 = \overline{B0}$

2

01	11	10
1	Х	_1
0	Х	0
0	Х	Х
1	Х	Х
	01 1 0 0 1	01 11 1 X 0 X 0 X 1 X


```
E3= B3 + B2B0 + B2B1
(1) (2) (3)
E2= B2B1 + B2B0 + B2B1B0
(4) (5) (6)
E1= B1B0 + B1B0
(7) (8)
E0 = B0
(9)
```


Step 3: Prepare the PLA program tabl_e

Product				I/P			O/P		
No.	Product term	B3	B2	B1	B0	E3	E2	E1	EO
1	B3	1	-	-	-	1	<u> </u>	-	-
2	B2B0	-	1	-	1	1	-	-	-
3	B2B1	-	1	1	-	1	-	-	-
4	B2B1	-	0	1	-	-	1		-
5	 B2B0	-	0	-	1	-	1	-	_
6	B2B1B0	-	1	0	0	-	1	-	-

7	B1B0	-	-	0	0	-	-	1	-
8	B1B0	-	-	1	1	-	-	1	-
9	BO	-	-	-	0	-	-	-	1

Step 4: Implementation of the PLA circuit

The logic circuit for BCD to Excess-3 converter using a PLA device

IMPLEMENTATION OF COMBINATIONAL LOGIC/ DIGITAL SYSTEMS DESIGN/PRIYANKA G-713523EC100, SANCHAI KRISHNA.M-713523EC106/II-ECE-C/SNSCT

Design a combinational circuit using PROM to convert gray code into binary code.

STEP 1: Truth Table for Grey to

GR	AY INP	UT	BINARY OUTPU (Y)				
G2	G1	G0	B2	B1	В		
0	0	0	0	0	C		
0	0	1	0	0	1		
0	1	1	0	1	C		
0	1	0	0	1	1		
1	1	0	1	0	C		
1	1	1	1	0	1		
1	0	1	1	1	C		
1	0	0	1	1	1		

IMPLEMENTATION OF COMBINATIONAL LOGIC/ DIGITAL SYSTEMS DESIGN/PRIYANKA G-713523EC100, SANCHAI KRISHNA.M-713523EC106/II-ECE-C/SNSCT

STEP2 : Simplification by using K map

 $B_2 = G_2 - - - - (1)$

 $B_1 = G_2 \overline{G}_1 + \overline{G}_2 G_1 - \dots - (2)$

 $B_0 = \overline{G}_2 \overline{G}_1 G_0 + \overline{G}_2 G_1 \overline{G}_0 - \dots - (3)$

8

STEP 3: No. of inputs 3 No. of address lines (locations) = $2 \land 3 = 8$ Each location can store 4 bit words No. of outputs = 4 ($B_{3} B_{1} B_{1} B_{0}$)

ROM Programming Table: (with the help of Eq. 1, 2 and 3)

ROM Programming Table: (with the help of Eq. 1, 2 and 3)

Location No.	Inputs			Outputs			
	G ₂	G ₁	G ₀	B ₃	B ₂	B ₁	B ₀
0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	1
2	0	1	0	0	0	1	1
3	0	1	1	0	0	1	0
4	1	0	0	0	1	1	1
5	1	0	1	0	1	1	0
6	1	1	0	0	1	0	0
7	1	1	1	0	1	0	1

IMPLEMENTATION OF COMBINATIONAL LOGIC/ DIGITAL SYSTEMS DESIGN/PRIYANKA G-713523EC100, SANCHAI KRISHNA.M-713523EC106/II-ECE-C/SNSCT

IMPLEMENTATION OF COMBINATIONAL LOGIC/ DIGITAL SYSTEMS DESIGN/PRIYANKA G-713523EC100, SANCHAI KRISHNA.M-713523EC106/II-ECE-C/SNSCT

THANK YOU

IMPLEMENTATION OF COMBINATIONAL LOGIC/ DIGITAL SYSTEMS DESIGN/PRIYANKA G-713523EC100, SANCHAI KRISHNA.M-713523EC106/II-ECE-C/SNSCT

