
SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech&B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

UNIT V

MULTITHREADING IN JAVA

Life cycle of a Thread (Thread States)

In Java, a thread always exists in any one of the following states. These states are:

1. New

2. Active

3. Blocked / Waiting

4. Timed Waiting

5. Terminated

Explanation of Different Thread States

New: Whenever a new thread is created, it is always in the new state. For a thread in the new state, the code has not been run yet and thus has not begun its execution.

Active: When a thread invokes the start() method, it moves from the new state to the active state. The active state contains two states within it: one is runnable, and the

other is running.

o Runnable: A thread, that is ready to run is then moved to the runnable state. In the runnable state, the thread may be running or may be ready to run at any

given instant of time. It is the duty of the thread scheduler to provide the thread time to run, i.e., moving the thread the running state.

A program implementing multithreading acquires a fixed slice of time to each individual thread. Each and every thread runs for a short span of time and when

that allocated time slice is over, the thread voluntarily gives up the CPU to the other thread, so that the other threads can also run for their slice of time.

Whenever such a scenario occurs, all those threads that are willing to run, waiting for their turn to run, lie in the runnable state. In the runnable state, there is a

queue where the threads lie.

o Running: When the thread gets the CPU, it moves from the runnable to the running state. Generally, the most common change in the state of a thread is from

runnable to running and again back to runnable.

Blocked or Waiting: Whenever a thread is inactive for a span of time (not permanently) then, either the thread is in the blocked state or is in the waiting state.

UNIT V 23CSP205-OBJECT ORIENTED PROGRAMMING USING JAVA Ms R.ARUNA/AP/CSE

For example, a thread (let's say its name is A) may want to print some data from the printer. However, at the same time, the other thread (let's say its name is B) is using the

printer to print some data. Therefore, thread A has to wait for thread B to use the printer. Thus, thread A is in the blocked state. A thread in the blocked state is unable to

perform any execution and thus never consume any cycle of the Central Processing Unit (CPU). Hence, we can say that thread A remains idle until the thread scheduler

reactivates thread A, which is in the waiting or blocked state.

When the main thread invokes the join() method then, it is said that the main thread is in the waiting state. The main thread then waits for the child threads to complete their

tasks. When the child threads complete their job, a notification is sent to the main thread, which again moves the thread from waiting to the active state.

If there are a lot of threads in the waiting or blocked state, then it is the duty of the thread scheduler to determine which thread to choose and which one to reject, and the

chosen thread is then given the opportunity to run.

Timed Waiting: Sometimes, waiting for leads to starvation. For example, a thread (its name is A) has entered the critical section of a code and is not willing to leave that

critical section. In such a scenario, another thread (its name is B) has to wait forever, which leads to starvation. To avoid such scenario, a timed waiting state is given to

thread B. Thus, thread lies in the waiting state for a specific span of time, and not forever. A real example of timed waiting is when we invoke the sleep() method on a

specific thread. The sleep() method puts the thread in the timed wait state. After the time runs out, the thread wakes up and start its execution from when it has left earlier.

Terminated: A thread reaches the termination state because of the following reasons:

o When a thread has finished its job, then it exists or terminates normally.

o Abnormal termination: It occurs when some unusual events such as an unhandled exception or segmentation fault.

A terminated thread means the thread is no more in the system. In other words, the thread is dead, and there is no way one can respawn (active after kill) the dead thread.

The following diagram shows the different states involved in the life cycle of a thread.

Implementation of Thread States

UNIT V 23CSP205-OBJECT ORIENTED PROGRAMMING USING JAVA Ms R.ARUNA/AP/CSE

In Java, one can get the current state of a thread using the Thread.getState() method. The java.lang.Thread.State class of Java provides the constants ENUM to represent

the state of a thread. These constants are:

 public static final Thread.State NEW

It represents the first state of a thread that is the NEW state.

 public static final Thread.State RUNNABLE

It represents the runnable state.It means a thread is waiting in the queue to run.

 public static final Thread.State BLOCKED

It represents the blocked state. In this state, the thread is waiting to acquire a lock.

 public static final Thread.State WAITING

It represents the waiting state. A thread will go to this state when it invokes the Object.wait() method, or Thread.join() method with no timeout. A thread in the waiting state

is waiting for another thread to complete its task.

 public static final Thread.State TIMED_WAITING

It represents the timed waiting state. The main difference between waiting and timed waiting is the time constraint. Waiting has no time constraint, whereas timed waiting

has the time constraint. A thread invoking the following method reaches the timed waiting state.

o sleep

o join with timeout

o wait with timeout

o parkUntil

o parkNanos

 public static final Thread.State TERMINATED

It represents the final state of a thread that is terminated or dead. A terminated thread means it has completed its execution.

Java Program for Demonstrating Thread States

The following Java program shows some of the states of a thread defined above.

UNIT V 23CSP205-OBJECT ORIENTED PROGRAMMING USING JAVA Ms R.ARUNA/AP/CSE

FileName: ThreadState.java

// ABC class implements the interface Runnable

1. class ABC implements Runnable

2. {

3. public void run()

4. {

5.

6. // try-catch block

7. try

8. {

9. // moving thread t2 to the state timed waiting

10. Thread.sleep(100);

11. }

12. catch (InterruptedException ie)

13. {

14. ie.printStackTrace();

15. }

16.

17.

18. System.out.println("The state of thread t1 while it invoked the method join() on thread t2 -"+ ThreadState.t1.getState());

19.

20. // try-catch block

21. try

22. {

23. Thread.sleep(200);

24. }

25. catch (InterruptedException ie)

26. {

27. ie.printStackTrace();

28. }

29. }

30. }

31.

UNIT V 23CSP205-OBJECT ORIENTED PROGRAMMING USING JAVA Ms R.ARUNA/AP/CSE

32. // ThreadState class implements the interface Runnable

33. public class ThreadState implements Runnable

34. {

35. public static Thread t1;

36. public static ThreadState obj;

37.

38. // main method

39. public static void main(String argvs[])

40. {

41. // creating an object of the class ThreadState

42. obj = new ThreadState();

43. t1 = new Thread(obj);

44.

45. // thread t1 is spawned

46. // The thread t1 is currently in the NEW state.

47. System.out.println("The state of thread t1 after spawning it - " + t1.getState());

48.

49. // invoking the start() method on

50. // the thread t1

51. t1.start();

52.

53. // thread t1 is moved to the Runnable state

54. System.out.println("The state of thread t1 after invoking the method start() on it - " + t1.getState());

55. }

56.

57. public void run()

58. {

59. ABC myObj = new ABC();

60. Thread t2 = new Thread(myObj);

61.

62. // thread t2 is created and is currently in the NEW state.

63. System.out.println("The state of thread t2 after spawning it - "+ t2.getState());

64. t2.start();

65.

66. // thread t2 is moved to the runnable state

UNIT V 23CSP205-OBJECT ORIENTED PROGRAMMING USING JAVA Ms R.ARUNA/AP/CSE

67. System.out.println("the state of thread t2 after calling the method start() on it - " + t2.getState());

68.

69. // try-catch block for the smooth flow of the program

70. try

71. {

72. // moving the thread t1 to the state timed waiting

73. Thread.sleep(200);

74. }

75. catch (InterruptedException ie)

76. {

77. ie.printStackTrace();

78. }

79.

80. System.out.println("The state of thread t2 after invoking the method sleep() on it - "+ t2.getState());

81.

82. // try-catch block for the smooth flow of the program

83. try

84. {

85. // waiting for thread t2 to complete its execution

86. t2.join();

87. }

88. catch (InterruptedException ie)

89. {

90. ie.printStackTrace();

91. }

92. System.out.println("The state of thread t2 when it has completed it's execution - " + t2.getState());

93. }

94.

95. }

Output:

The state of thread t1 after spawning it - NEW

The state of thread t1 after invoking the method start() on it - RUNNABLE

The state of thread t2 after spawning it - NEW

the state of thread t2 after calling the method start() on it - RUNNABLE

UNIT V 23CSP205-OBJECT ORIENTED PROGRAMMING USING JAVA Ms R.ARUNA/AP/CSE

The state of thread t1 while it invoked the method join() on thread t2 -TIMED_WAITING

The state of thread t2 after invoking the method sleep() on it - TIMED_WAITING

The state of thread t2 when it has completed it's execution - TERMINATED

Explanation: Whenever we spawn a new thread, that thread attains the new state. When the method start() is invoked on a thread, the thread scheduler moves that thread to

the runnable state. Whenever the join() method is invoked on any thread instance, the current thread executing that statement has to wait for this thread to finish its

execution, i.e., move that thread to the terminated state. Therefore, before the final print statement is printed on the console, the program invokes the method join() on thread

t2, making the thread t1 wait while the thread t2 finishes its execution and thus, the thread t2 get to the terminated or dead state. Thread t1 goes to the waiting state because

it is waiting for thread t2 to finish it's execution as it has invoked the method join() on thread t2.

UNIT V 23CSP205-OBJECT ORIENTED PROGRAMMING USING JAVA Ms R.ARUNA/AP/CSE

	UNIT V 23CSP205-OBJECT ORIENTED PROGRAMMING USING JAVA Ms R.ARUNA/AP/CSE
	COIMBATORE-641 035, TAMIL NADU
	UNIT V
	MULTITHREADING IN JAVA
	Life cycle of a Thread (Thread States)
	Explanation of Different Thread States
	Implementation of Thread States
	Java Program for Demonstrating Thread States

