

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

UNIT V

BIOREACTORS, BIOPHARMING, AND RECOMBINANT VACCINES

Bioreactors

Definition

A bioreactor is a controlled environment or vessel used to support and optimize biological reactions. They are commonly used in the production of cells, tissues, or microorganisms for various biotechnological applications.

Types of Bioreactors

1.	Batch Bioreactors:
0	All nutrients and microorganisms are added at the beginning.
0	No additions during the process except oxygen or pH adjustments.
0	Example: Fermentation of antibiotics.
2.	Continuous Bioreactors:
0	Nutrients are continuously supplied, and products are removed.
0	High productivity.
0	Example: Large-scale production of enzymes.
3.	Fed-Batch Bioreactors:
0	Combination of batch and continuous systems.
0	Nutrients added periodically during the process.
0	Example: Insulin production.
4.	Air-lift Bioreactors:
0	Use air bubbles for mixing.
0	Suitable for shear-sensitive cells like mammalian cells.

Key Parameters in Bioreactors

- **Temperature**: Optimal for enzyme activity and cell growth.
- **pH**: Maintained for metabolic activity.
- **Dissolved Oxygen**: Ensures aerobic conditions.
- **Agitation and Mixing**: Uniform distribution of nutrients and cells.

Applications

- **Pharmaceuticals**: Antibiotics, vaccines, monoclonal antibodies.
- **Food Industry**: Yogurt, beer, vinegar.
- **Environmental**: Wastewater treatment.

Biopharming Definition

Biopharming, or molecular pharming, is the use of genetically engineered plants or animals to produce pharmaceutical products.

Process

0

0

0

- 1. Gene Selection:
 - Identify and isolate the gene encoding the desired therapeutic protein.
- 2. **Transformation**:
 - Insert the gene into the host organism's genome (e.g., plant or animal).
- 3. **Expression**:
 - Ensure the host organism expresses the protein efficiently.
- 4. Harvesting:
- Extract and purify the protein from the host organism.

Examples

Plant-based Biopharming:

• Tobacco, maize, and rice are genetically modified to produce therapeutic proteins like monoclonal antibodies or vaccines.

• Animal-based Biopharming:

• Transgenic goats or cows produce proteins like antithrombin (used to prevent blood clots) in their milk.

Advantages

- Cost-effective.
- Scalable production.
- Reduced risk of human pathogen contamination.

Limitations

- Ethical concerns.
- Regulatory challenges.
- Environmental risks (cross-contamination).

Recombinant Vaccines Definition

Recombinant vaccines are created by inserting the gene encoding an antigen from a pathogen into a suitable vector to produce the antigen in a host organism.

Production Process

- 1. Gene Cloning:
- Isolate and clone the gene encoding the antigen of interest.
- 2. **Expression System**:
 - Insert the gene into a vector like bacteria, yeast, or mammalian cells.
- 3. Antigen Purification:
- Extract and purify the antigen from the host system.
- 4. **Formulation**:

0

Combine the purified antigen with adjuvants to enhance immune response.

Types of Recombinant Vaccines

- Contain only specific antigens from the pathogen.
- Example: Hepatitis B vaccine.
- 2. Virus-like Particles (VLPs):
 - Non-infectious particles mimicking the pathogen.
- Example: HPV vaccine (Gardasil).
- 3. **Recombinant Vector Vaccines**:
- Use harmless viruses as vectors to deliver the antigen.
- Example: Ebola vaccine.

Advantages

- High safety profile (no live pathogens).
- Scalable production.
- Long-term immunity.

Challenges

- High production cost.
- Cold chain storage requirements.
- Limited antigen diversity in some vaccines.

Integration of Bioreactors, Biopharming, and Recombinant Vaccines

1.	Bioreactors:
0	Critical for scaling up vaccine production.
0	Provide a controlled environment for recombinant protein synthesis.

2. **Biopharming**:

• Offers an alternative to traditional vaccine production methods, reducing costs and increasing accessibility.

3. **Recombinant Vaccines**:

• Utilized for diseases where traditional methods are ineffective or unsafe, contributing to public health advancements.

The synergy between bioreactors, biopharming, and recombinant vaccine technologies represents a significant advancement in biotechnology, enabling the efficient, safe, and cost-effective production of essential therapeutic agents. These innovations continue to transform healthcare by addressing global challenges like infectious diseases and pandemics.

0

0