
19CST102 & Object Oriented Programming 

 
 

SNS COLLEGE OF TECHNOLOGY 
(An Autonomous Institution) 

COIMBATORE – 35 
DEPARTMENT OF COMPUTER SIENCE AND ENGINEERING 

UNIT 3 

 

Inheritance in Java 

1. Inheritance 

2. Types of Inheritance 

3. Why multiple inheritance is not possible in Java in case of class? 

Inheritance in Java is a mechanism in which one object acquires all the properties and 

behaviors of a parent object. It is an important part of OOPs (Object Oriented programming 

system). 

The idea behind inheritance in Java is that you can create new classes that are built upon 

existing classes. When you inherit from an existing class, you can reuse methods and fields of 

the parent class. Moreover, you can add new methods and fields in your current class also. 

Inheritance represents the IS-A relationship which is also known as a parent-child 

relationship. 

Why use inheritance in java 

 For Method Overriding (so runtime polymorphism can be achieved). 

 For Code Reusability. 

Terms used in Inheritance 

 Class: A class is a group of objects which have common properties. It is a template or 

blueprint from which objects are created. 

 Sub Class/Child Class: Subclass is a class which inherits the other class. It is also 

called a derived class, extended class, or child class.  

 Super Class/Parent Class: Superclass is the class from where a subclass inherits the 

features. It is also called a base class or a parent class. 

 Reusability: As the name specifies, reusability is a mechanism which facilitates you to 

reuse the fields and methods of the existing class when you create a new class. You can 

use the same fields and methods already defined in the previous class.  

The syntax of Java Inheritance 

1. class Subclass-name extends Superclass-name   

2. {   

3.    //methods and fields   

4. }   

https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/inheritance-in-java#inheritancetypes
https://www.javatpoint.com/inheritance-in-java#inheritancenotmultiple
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/method-overriding-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java


19CST102 & Object Oriented Programming 

 
 

The extends keyword indicates that you are making a new class that derives from an existing 

class. The meaning of "extends" is to increase the functionality. 

In the terminology of Java, a class which is inherited is called a parent or superclass, and the 

new class is called child or subclass. 

 

Java Inheritance Example 

 

As displayed in the above figure, Programmer is the subclass and Employee is the superclass. 

The relationship between the two classes is Programmer IS-A Employee. It means that 

Programmer is a type of Employee.  

1. class Employee 

2. {   

3.  float salary=40000;   

4. }   

5.  

6. class Programmer extends Employee 

7. {   

8.  int bonus=10000;   

9.  public static void main(String args[]) 

10. {   

11.    Programmer p=new Programmer();   

12.    System.out.println("Programmer salary is:"+p.salary);   

13.    System.out.println("Bonus of Programmer is:"+p.bonus);   

14. }   

15. }   



19CST102 & Object Oriented Programming 

 
 

Test it Now  
 Programmer salary is:40000.0 

 Bonus of programmer is:10000 

In the above example, Programmer object can access the field of own class as well as of 

Employee class i.e. code reusability.  

 

Types of inheritance in java 

On the basis of class, there can be three types of inheritance in java: single, multilevel and 

hierarchical. 

In java programming, multiple and hybrid inheritance is supported through interface only. We 

will learn about interfaces later. 

 

Note: Multiple inheritance is not supported in Java through class. 

When one class inherits multiple classes, it is known as multiple inheritance. For Example: 

https://www.javatpoint.com/opr/test.jsp?filename=Programmer


19CST102 & Object Oriented Programming 

 
 

 

 

Single Inheritance Example 

When a class inherits another class, it is known as a single inheritance. In the example given 

below, Dog class inherits the Animal class, so there is the single inheritance. 

File: TestInheritance.java 

1. class Animal 

2. {   

3. void eat() 

4.     { 

5.     System.out.println("eating..."); 

6.     }   

7. }   

8.  

9. class Dog extends Animal 

10. {   

11. void bark() 

12.      { 

13.      System.out.println("barking..."); 

14.      }   

15. }   

 

16. class TestInheritance 

17. {   



19CST102 & Object Oriented Programming 

 
 

18. public static void main(String args[]) 

19.    {   

20.     Dog d=new Dog();   

21.    d.bark();   

22.     d.eat();   

23.     } 

24. }   

Output: 

barking... 

eating... 

Multilevel Inheritance Example 

When there is a chain of inheritance, it is known as multilevel inheritance. As you can see in 

the example given below, BabyDog class inherits the Dog class which again inherits the 

Animal class, so there is a multilevel inheritance. 

File: TestInheritance2.java 

1. class Animal 

2. {   

3. void eat() 

4. { 

5. System.out.println("eating..."); 

6. }   

7. } 

8.    

9. class Dog extends Animal 

10. {   

11. void bark() 

12. { 

13. System.out.println("barking..."); 

14. }   

15. }   

16.  
17. class BabyDog extends Dog 

18. {   

19. void weep() 

20. { 

21. System.out.println("weeping..."); 

22. }   

23. }   

24. class TestInheritance2 

25. {   

26. public static void main(String args[]) 

27. {   

28. BabyDog d=new BabyDog();   

29. d.weep();   



19CST102 & Object Oriented Programming 

 
 

30. d.bark();   

31. d.eat();   

32. } 

33. }   

Output: 

weeping... 

barking... 

eating... 

Hierarchical Inheritance Example 

When two or more classes inherits a single class, it is known as hierarchical inheritance. In the 

example given below, Dog and Cat classes inherits the Animal class, so there is hierarchical 

inheritance. 

File: TestInheritance3.java 

1. class Animal 

2. {   

3. void eat() 

4. { 

5. System.out.println("eating..."); 

6. }   

7. }   

8.  

9. class Dog extends Animal 

10. {   

11. void bark() 

12. { 

13. System.out.println("barking..."); 

14. }   

15. }   

16.  
17. class Cat extends Animal 

18. {   

19. void meow() 

20. {System.out.println("meowing...");}   

21. }   

22. class TestInheritance3 

23. {   

24. public static void main(String args[]) 

25. {   

26. Cat c=new Cat();   

27. c.meow();   

28. c.eat();   

29. //c.bark();//C.T.Error   

30. } 

31. }   



19CST102 & Object Oriented Programming 

 
 

Output: 

meowing... 

eating... 

 

Q) Why multiple inheritance is not supported in java? 

To reduce the complexity and simplify the language, multiple inheritance is not supported in 

java.  Consider a scenario where A, B, and C are three classes. The C class inherits A and B 

classes. If A and B classes have the same method and you call it from child class object, there 

will be ambiguity to call the method of A or B class. Since compile-time errors are better than 

runtime errors, Java renders compile-time error if you inherit 2 classes. So whether you have 

same method or different, there will be compile time error. 

1. class A 

2. {   

3. void msg(){System.out.println("Hello");}   

4. }   

5. class B 

6. {   

7. void msg(){System.out.println("Welcome");}   

8. }   

9.  

10. class C extends A,B{//suppose if it were   

11.     public static void main(String args[]) 

12. {   

13.    C obj=new C();   

14.    obj.msg();//Now which msg() method would be invoked?   

15. }   

16. }   

Test it Now  
 Compile Time Error 

 

 

https://www.javatpoint.com/opr/test.jsp?filename=C

	Inheritance in Java
	Why use inheritance in java
	Terms used in Inheritance
	The syntax of Java Inheritance
	Java Inheritance Example
	Types of inheritance in java
	Note: Multiple inheritance is not supported in Java through class.

	Single Inheritance Example
	Multilevel Inheritance Example
	Hierarchical Inheritance Example
	Q) Why multiple inheritance is not supported in java?


