
19CST102 & Object Oriented Programming

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

COIMBATORE – 35
DEPARTMENT OF COMPUTER SIENCE AND ENGINEERING

UNIT 3

Java Package
1. Java Package

2. Example of package

3. Accessing package

1. By import packagename.*

2. By import packagename.classname

3. By fully qualified name

4. Subpackage

5. Sending class file to another directory

6. -classpath switch

7. 4 ways to load the class file or jar file

8. How to put two public class in a package

9. Static Import

10. Package class

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined

package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql

etc.

Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be

easily maintained.

2) Java package provides access protection.

https://www.javatpoint.com/package
https://www.javatpoint.com/package#packageex
https://www.javatpoint.com/package#packageaccess
https://www.javatpoint.com/package#packageaccess1
https://www.javatpoint.com/package#packageaccess2
https://www.javatpoint.com/package#packageaccess3
https://www.javatpoint.com/package#packagesub
https://www.javatpoint.com/package#packageanotherdirectory
https://www.javatpoint.com/package#packageclasspathswitch
https://www.javatpoint.com/package#packagewaystoload
https://www.javatpoint.com/package#packagetwopublic
https://www.javatpoint.com/package#packagestaticimport
https://www.javatpoint.com/package-class

19CST102 & Object Oriented Programming

3) Java package removes naming collision.

Simple example of java package

The package keyword is used to create a package in java.

1. //save as Simple.java

2. package mypack;

3. public class Simple{

4. public static void main(String args[]){

5. System.out.println("Welcome to package");

6. }

7. }

How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

1. javac -d directory javafilename

For example

19CST102 & Object Oriented Programming

1. javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You can

use any directory name like /home (in case of Linux), d:/abc (in case of windows) etc. If

you want to keep the package within the same directory, you can use . (dot).

How to run java package program

You need to use fully qualified name e.g. mypack.Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output:Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents destination. The . represents

the current folder.

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be

accessible but not subpackages.

The import keyword is used to make the classes and interface of another package

accessible to the current package.

Example of package that import the packagename.*

1. //save by A.java

2. package pack;

19CST102 & Object Oriented Programming

3. public class A{

4. public void msg(){System.out.println("Hello");}

5. }

1. //save by B.java

2. package mypack;

3. import pack.*;

4.

5. class B{

6. public static void main(String args[]){

7. A obj = new A();

8. obj.msg();

9. }

10. }
Output:Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package will be

accessible.

Example of package by import package.classname

1. //save by A.java

2.

3. package pack;

4. public class A{

5. public void msg(){System.out.println("Hello");}

6. }

1. //save by B.java

2. package mypack;

3. import pack.A;

4.

5. class B{

6. public static void main(String args[]){

7. A obj = new A();

8. obj.msg();

9. }

10. }

19CST102 & Object Oriented Programming

Output:Hello

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be

accessible. Now there is no need to import. But you need to use fully qualified name

every time when you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util and java.sql

packages contain Date class.

Example of package by import fully qualified name

1. //save by A.java

2. package pack;

3. public class A{

4. public void msg(){System.out.println("Hello");}

5. }

1. //save by B.java

2. package mypack;

3. class B{

4. public static void main(String args[]){

5. pack.A obj = new pack.A();//using fully qualified name

6. obj.msg();

7. }

8. }
Output:Hello

If you import a package, all the classes and interface of that package will be imported

excluding the classes and interfaces of the subpackages. Hence, you need to import

the subpackage as well.

19CST102 & Object Oriented Programming

Note: Sequence of the program must be package then import
then class.

Subpackage in java

Package inside the package is called the subpackage. It should be created to

categorize the package further.

Let's take an example, Sun Microsystem has definded a package named java that

contains many classes like System, String, Reader, Writer, Socket etc. These classes

represent a particular group e.g. Reader and Writer classes are for Input/Output

operation, Socket and ServerSocket classes are for networking etc and so on. So, Sun

has subcategorized the java package into subpackages such as lang, net, io etc. and

put the Input/Output related classes in io package, Server and ServerSocket classes in

net packages and so on.

Example of Subpackage

1. package com.javatpoint.core;

2. class Simple{

3. public static void main(String args[]){

4. System.out.println("Hello subpackage");

5. }

6. }

To Compile: javac -d . Simple.java

To Run: java com.javatpoint.core.Simple

Output:Hello subpackage

19CST102 & Object Oriented Programming

How to send the class file to another directory or
drive?

There is a scenario, I want to put the class file of A.java source file in classes folder of c:

drive. For example:

1. //save as Simple.java

2. package mypack;

3. public class Simple{

4. public static void main(String args[]){

5. System.out.println("Welcome to package");

6. }

7. }

To Compile:

e:\sources> javac -d c:\classes Simple.java

To Run:

To run this program from e:\source directory, you need to set classpath of the directory where the class file

resides.

e:\sources> set classpath=c:\classes;.;

19CST102 & Object Oriented Programming

e:\sources> java mypack.Simple

Another way to run this program by -classpath switch
of java:

The -classpath switch can be used with javac and java tool.

To run this program from e:\source directory, you can use -classpath switch of java that

tells where to look for class file. For example:

e:\sources> java -classpath c:\classes mypack.Simple

Output:Welcome to package

Ways to load the class files or jar files

There are two ways to load the class files temporary and permanent.

o Temporary

o By setting the classpath in the command prompt

o By -classpath switch

o Permanent

o By setting the classpath in the environment variables

o By creating the jar file, that contains all the class files, and copying the jar file in

the jre/lib/ext folder.

1. //save as C.java otherwise Compilte Time Error

2.

3. class A{}

4. class B{}

5. public class C{}

How to put two public classes in a package?

If you want to put two public classes in a package, have two java source files containing one public class, but

keep the package name same. For example:

1. //save as A.java

2.

19CST102 & Object Oriented Programming

3. package javatpoint;

4. public class A{}

1. //save as B.java

2.

3. package javatpoint;

4. public class B{}

	Java Package
	Advantage of Java Package
	Simple example of java package
	How to compile java package
	How to run java package program
	How to access package from another package?
	1) Using packagename.*

	Example of package that import the packagename.*
	2) Using packagename.classname

	Example of package by import package.classname
	3) Using fully qualified name

	Example of package by import fully qualified name
	Note: Sequence of the program must be package then import then class.

	Subpackage in java
	Example of Subpackage

	How to send the class file to another directory or drive?
	To Compile:
	To Run:
	Another way to run this program by -classpath switch of java:
	Ways to load the class files or jar files
	How to put two public classes in a package?

