

Understanding Blockchain: A Deep Dive

Welcome to FINTECH AND FINANCIAL ANALYTICS, unit 4 on blockchain. This presentation explores different types of blockchains, including their characteristics and real-world applications.

Recap: Previous Presentation

Introduction to Blockchain

We introduced the concept of blockchain, including its core principles, decentralized nature, and role in the emerging digital economy.

Key Concepts

We discussed important concepts like cryptography, consensus mechanisms, and smart contracts, forming the building blocks of blockchain technology.

Guess the Topic

What is a blockchain?

It's a secure, transparent, and decentralized ledger for recording transactions. It's a fundamental technology driving innovation in finance and beyond.

How does blockchain work?

It relies on cryptography and a distributed network to ensure data integrity, security, and transparency.

What are the different types?

Today we'll explore different types of blockchains, each with unique features and applications.

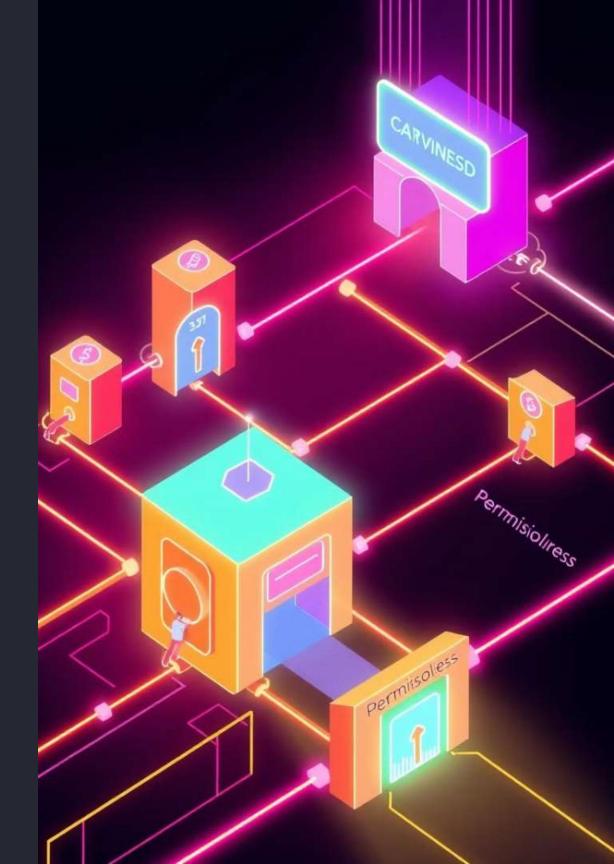
Public vs Private Blockchains

Public Blockchains

Anyone can join the network, participate in mining or validation, and access the entire transaction history. Examples: Bitcoin and Ethereum.

Private Blockchains

Access is restricted to authorized participants, typically controlled by an organization or consortium. Examples: Hyperledger Fabric and Corda.


Permissioned vs Permissionless Blockchains

Permissionless Blockchains

Open to anyone, allowing anyone to join and participate in the network without any authorization.

Permissioned Blockchains

Require permission to participate, controlled by a central authority or consortium, suitable for specific applications and use cases.

Real-Life Case Studies

Supply Chain Management

Blockchain can track goods from origin to delivery, enhancing transparency and reducing fraud.

[©]

Digital Identity

Blockchain allows for secure and tamper-proof digital identities, simplifying user authentication and verification.

Financial Services

Blockchain enables faster and more efficient cross-border payments, securities trading, and other financial operations.

Scalability and Consensus Mechanisms

Proof-of-Work

Requires miners to solve complex computational puzzles, securing the network but consuming significant energy.

Proof-of-Stake

2

3

Validators are selected based on their stake in the network, offering a more energy-efficient approach.

Practical Byzantine Fault Tolerance (PBFT) Suitable for permissioned blockchains, allowing for faster transaction processing and improved scalability.

Student Learning Assessment

Define blockchain.

Provide a brief definition of blockchain and its core components.

Compare public and private blockchains.

Explain the key differences between public and private blockchains, including their advantages and disadvantages.

Discuss a real-life application of blockchain.

Choose a real-world example of blockchain implementation and analyze its benefits and challenges.

3

2

Summary and Key Takeaways

Types of blockchains

We explored different types of blockchains, including public, private, permissioned, and permissionless.

Real-world applications

Blockchain has diverse applications in various sectors, from finance to supply chain management.

Scalability and consensus

We discussed the importance of scalability and different consensus mechanisms used in blockchain networks.

1

2

References and Additional Resources

Online Resources

CoinDesk, Cointelegraph, Bitcoin.org, Ethereum.org

Blockchain Revolution by Don Tapscott and Alex Tapscott, Mastering Bitcoin by Andreas Antonopoulos

Books