
Crypto Primitives: Building Blocks of Blockchain Security

Welcome to Unit 4 of our Fintech and Financial Analytics course. Today, we'll delve into the foundational elements of blockchain security: crypto primitives. These fundamental cryptographic concepts are essential for understanding how blockchain technology works and its implications for the future of finance.

Recap: Essential Blockchain Concepts

Decentralized Networks

Blockchains are distributed networks without a central authority, enabling trust and transparency.

Immutability

Once a block is added to the chain, it cannot be altered, guaranteeing data integrity and security.

Smart Contracts

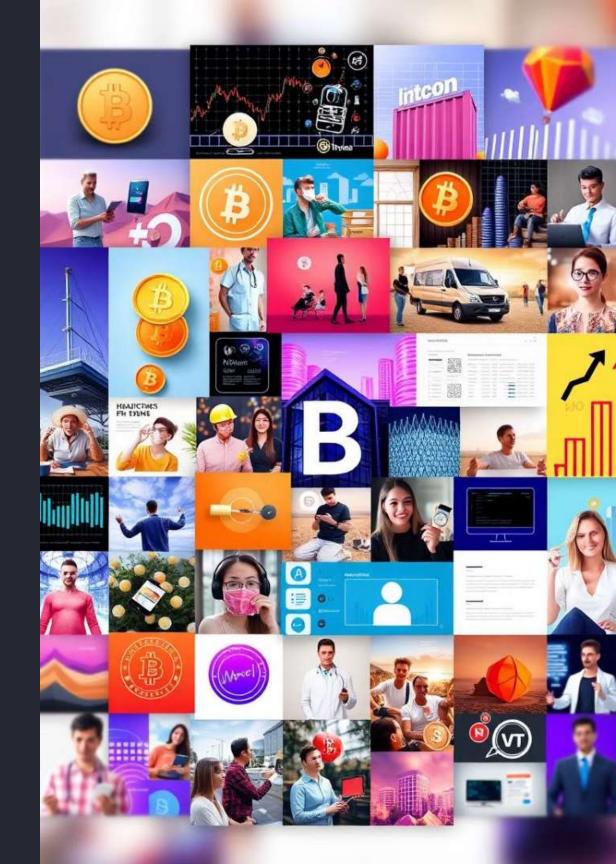
Automated agreements executed on the blockchain, enabling trustless interactions and facilitating various financial applications.

Guess the Topic: Blockchain Applications

Digital Assets

Cryptocurrencies, NFTs, and other digital assets leverage blockchain technology for secure ownership and transfer.

Supply Chain Transparency


Blockchain tracks goods from origin to destination, improving transparency and efficiency in global trade.

Healthcare Records

Securely storing and sharing patient data on the blockchain improves data privacy and interoperability.

Identity Management

Blockchain enables decentralized identity systems, empowering individuals to control their own data and verify identities.

Fundamentals of Cryptography

Ensuring only authorized parties can access sensitive information.

Integrity

Protecting data from unauthorized modification or corruption.

Authentication

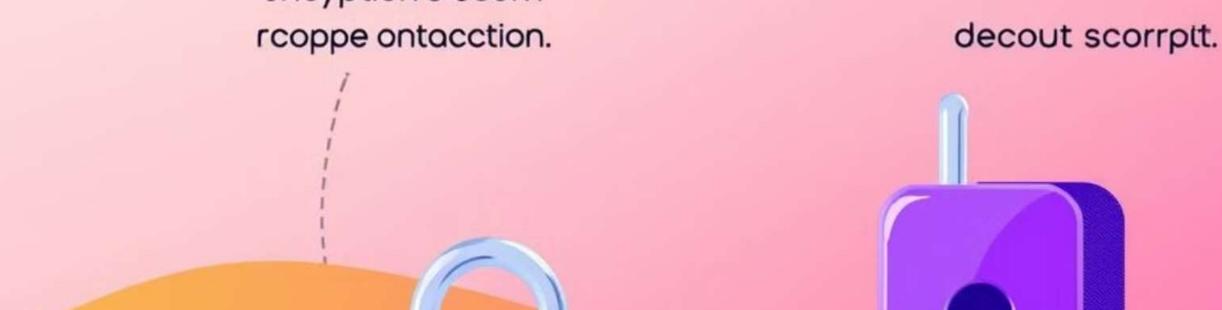
Verifying the identity of parties involved in a transaction or communication.

Non-repudiation

Preventing parties from denying their involvement in a transaction or action.

2

3


Hash Functions and Digital Signatures

Hash Function

A one-way mathematical function that converts data into a unique and fixed-length hash value.

Digital Signature

Uses a hash function and private keys to create a unique signature for a document, verifying its authenticity and integrity.

Asymmetric and Symmetric Encryption

Symmetric Encryption

Uses the same key for both encryption and decryption, requiring secure key exchange.

Asymmetric Encryption

Uses separate keys for encryption and decryption, enabling secure communication without key sharing.

Real-World Case Study: Cryptocurrency Transactions

1	Transaction Initiation User initiates a cryptocurrency transfer from a digital wallet.			
2	Hashing and The transaction		l Signing n data is hashed and signed using the user's private key.	
3				nd Validation n is broadcast to the network and validated by
4				Block Addition The validated transaction is added to a bloo the blockchain.

by miners.

lock and appended to

Exercises: Test Your Understanding

Hash Function

Describe the properties of a good hash function.

Digital Signature


2

Explain the purpose of a digital signature in blockchain security.

Differentiate between symmetric and asymmetric encryption and their applications in blockchain.

Encryption

Summary: Key Crypto Concepts Covered

Hash Functions

2 Di

One-way mathematical functions ensuring data integrity and uniqueness. Authenticating documents and verifying the sender's identity.

Encryption

3

Protecting sensitive information from unauthorized access.

Digital Signatures

References and Further Resources

- 1. Investopedia: Cryptography
- 2. Wikipedia: Cryptographic Hash Function
- 3. Coursera: Blockchain Specialization
- 4. "Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money, Business, and the World" by Don

Tapscott and Alex Tapscott.