

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

UNIT IV

Taylor's expansion
Let
$$f(x,y)$$
 be a function of two
variables x and y .
The Taylor Series expansion about the
point (a,b) is given by,
 $f(x,y) = f(a,b) + (x-a) f_x(a,b) + (y-b) f_y(a,b)$
 $+ \frac{1}{a!} [(x-a)^2 f_{xx}(a,b) + 2 (x-a)(y-b)$
 $f_{xy}(a,b) + (y-b)^2 f_{yy}(a,b]$
 $+ \frac{1}{3!} [(x-a)^3 f_{xxx}(a,b) + 3 (x-a)^2(y-b)$.
 $f_{xxy}(a,b)$
 $+ 3 (x-a)(y-b)^2 f_{xyy}(a,b) + (y-b)^3 f_{yyy}(a,b)]$
 $+ \cdots$
Problems:
() Expand $x^2 y + 3y - 2$ in powers of $x-1$
and $y + 2$ using Taylor's expansion.
Solution:
Given: $f(x,y) = x^2 y + 3y - 2$
 $\therefore a = 1$
 $b = -2$
 $y+2 = 0$
 $y=-2$

E

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

$$\begin{aligned} f(x,y) &= x^{2}y + 3y - 2 & \text{At} (a,b) = (1, -2) \\ f(x,y) &= x^{2}y + 3y - 2 & f(1, -2) = 1(-2) + 3(-2) \\ &= -10 \\ f_{x} &= 2xy & f_{x}(1, -2) = 2(1)(-2) = -4 \\ f_{xx} &= 2y & f_{xx}(1, -2) = 2(-2) = -4 \\ f_{xxx} &= 0 & f_{xxx}(1, -2) = 0 \\ f_{y} &= x^{2} + 3 & f_{y}(1, -2) = 0 \\ f_{yyy} &= 0 & f_{yyy}(1, -2) = 0 \\ f_{yyy} &= 0 & f_{yyy}(1, -2) = 0 \\ f_{xxy} &= 2x & f_{xy}(1, -2) = 2(1) = 2 \\ f_{xxy}(4, -2) &= 2 \\ f_{xxy}(4, -2) &= 2 \\ f_{xyy}(1, -2) &= 0 \\ \hline f_{xyy} &= 0 & f_{xy}(1, -2) = 0 \\ \hline f_{xyy} &= 0 & f_{xyy}(1, -2) = 0 \\ \hline f_{xyy} &= 0 & f_{xyy}(1, -2) = 0 \\ \hline f_{xyy} &= 0 & f_{xyy}(1, -2) = 0 \\ \hline f_{xyy} &= 0 & f_{xy}(4, -2) &= 2 \\ \hline f_{xyy}(1, -2) &= 0 & f_{xyy}(1, -2) = 0 \\ \hline f_{xyy} &= 0 & f_{xy}(4, -2) &= 2 \\ \hline f_{xyy}(1, -2) &= 0 & f_{xyy}(1, -2) &= 0 \\ \hline f_{xyy} &= 0 & f_{xy}(1, -2) &= 0 \\ \hline f_{xyy} &= 0 & f_{xyy}(1, -2) &= 0 \\ \hline f_{xyy} &= 0 & f_{xy}(1, -2) &= 0 \\ \hline f_{xyy} &= 0 & f_{xy}(1, -2) &= 0 \\ \hline f_{xyy} &= 0 & f_{xy}(1, -2) &= 0 \\ \hline f_{xyy} &= 0 & f_{xyy}(1, -2) &= 0 \\ \hline f_{xyy} &= 0 & f_{xy}(1, -2) &= 0 \\ \hline f_{xyy} &= 0 & f_{xyy}(1, -2) &= 0 \\ \hline f_{xyy} &= 0 & f$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS