

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Randomized block Design (RBD) (or Two way Classification

It is a two factor experiment.

Procedure :

Step 1: Null hypothesis: H.: There is no significant difference between columns and rows.

Alternative hypothesis: H.: There is a significant difference between columns and rows.

Step 2:
$$\pm$$
 Find N
 \pm Find T
 \pm Find C.F = T^2/N

Step 3:
$$\star$$
 Find $SST = \sum x_1^2 + \sum x_2^2 + \cdots - C.F$
 \star Find $SSC = \frac{\left(\sum x_1\right)^2 + \left(\sum x_2\right)^2}{C_1} + \cdots - C.F$
 \star Find $SSR = \frac{\left(\sum y_1\right)^2 + \left(\sum y_2\right)^2}{r_1} + \cdots - C.F$
 \star Find $SSE = SST - SSC - SSR$

Step 4: ANOVA table

Source of Variation	Degree of freedom	Sam of Squares	Mean Sum of squares	Variance Tatio	Table value
Between	(c-1)	ssc	MSC = SSC C-1	F _c = MSC MSE	F_ (C-1 ,
Between	(~-1)	SSR	MSR = SSR	FE MSR	
Between	(r-1).x	SSE	MSE = SSE	MSE	E (7-1).

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Problem.

An experiment was designed to study the performance of a different detergents for cleaning of injectors. The following "Cleanliness" scadings were obtained with specially designed equipment for 12 tanks of gas distributed over 3 different models of engines.

*	and the second second second second	1 0	Engine 2	Engine 3	Total
	Detergent	Engine 1	Cigine =	J	. 70
- Karen	A	45	43	51	139
Service Common	В	47	46	52	145
the market	6	48	50	55	153
	0	42	37	49	128
	D	-	176	207	565
1	Total	182	170		

Perform the ANOVA test at 0.01 level of significance whether there are differences in the detergents or in the engines.

Solution: Fix origin = 50. Subtract each element

from so.

Engine	×,	X ₂	X3	Total	x,2	X22	X3
A (4,)	-5	-7	+1	-11	25	49	L
B (y2)	-3	-4	2	-5	9	16	4
c (y3)	-2	0	5	3	4	0	25
D (94)	-8	-13	-1	-22	64	169	1
Total	- 18	- 24	7	- 35	102	234	31

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Step 1: Null hypothesis
$$H_0$$
: There is no Significant difference between engines and detergents.

Alternative hypothesis H_1 : There is a significant difference between engines and detergents

Step 2: $\frac{1}{2}$ \frac

Stepy: ANOVA table:

SSE = 18.84

Source of Vasiation	Degree of	Sum of Squares	Mean Sum of Squares	Variance Yatio	at 14 ites
Between Columns	(-1 = 3-1 = 2	SSC = 135.17	MSC = SSC C-1 = 67.585	Fe = MSC MSE	Fa(2,6) = 10.92
Between rows	7-1=4-1 =3	SSR = 110.91	MSR = 95R	Fe = MSR	F_ (3/6)
Between essors	((-1)(7-1)	SSE = 18.84	MSE - 55E - 3.9	The state of the s	29.78

Steps: Decision: Since Fc > Fx and FR > Fx, Ho is sejected.

There is a significant difference between engines and detergents