SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 23ITT201 DATA STRUCTURES

III1 YEAR/ III SEMESTER

Topic: B+ tree

> r
CLErITITions

$ gﬁﬁ B tree Deletion

Déletion is also performed at the leaf nodes. The node which is to be deleted can either be a leaf node or an
Internal node. Following algorithm needs to be followed in order to delete a node from a B tree.

» Locate the leaf node.
> If there are more than m/2 keys in the leaf node then delete the desired key from the node.
> If the leaf node doesn't contain m/2 keys then complete the keys by taking the element from right or left
sibling.
> If the left sibling contains more than m/2 elements then push its largest element up to its parent and
move the intervening element down to the node where the key is deleted.
> If the right sibling contains more than m/2 elements then push its smallest element up to the parent and
move intervening element down to the node where the key is deleted.
> If neither of the sibling contain more than m/2 elements then create a new leaf node by joining two leaf
nodes and the intervening element of the parent node.
> If parent is left with less than m/2 nodes then, apply the above process on the parent too.

If the the node which Is to be deleted is an internal node, then replace the node with its in-order successor or
predecessor. Since, successor or predecessor will always be on the leaf node hence, the process will be similar
as the node is being deleted from the leaf node.

12/18/2024 B tree/231TT201_DS /VINODHINI.B/CSE/SNSCT 2/10

~»

B + tr e e (.ﬁzyrlf&f/oils

f"; /Ig “x"lj;
C -)

« B+ Tree Combines feature of ISAM(indexed sequential access
method) and B Trees

* |t contains index pages and data pages . The data pages always appear
as leaf nodes In the tree

* The root node and intermediate nodes are always index pages . These
features are similar to ISAM.Unlike ISAM, overflow pages are not
used in B+ trees

12/18/2024 B tree/231TT201_DS /VINODHINI.B/CSE/SNSCT 3/16

X2 -~ -
W}J Triyrionls

B tree

B+ Trees and B Trees use a "fill factor" to control the growth and the shrinkage. A 50% fill factor would be

the minmum for any B+ or B tree. As our example we use the smallest page structure. This means that ou
B+ tree conforms to the followmg guidelmes

Number of Keys/page 4

Number of Pointerspage 3

Fill Factor 50%

Mummum Keys i each page 2

12/18/2024 B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT 4/16

AV .
o 1S
C ¢ Y 5 >
= Trrionls
B+ tree

B+ Tree with four keys

/,25 SOQL\
/N

60|65(|7

55

5180(85(90

12/18/2024 B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT 5/16

=N a..
S ﬁ-r? ~»
. 4 ’Jb Trayrionls

B+ tree

The inszert algorithm for B+ Trees

Leaf Page Index Page

Full FULL Acton

NO NO Place the record m sorted position m the appropriate leaf page

Split the leaf page

Place Middle Key in the index page 1n sorted order.

Left leaf page contains records with keys below the middle key
Right leaf page contams records with kevs equal 10 or grearer rthan
the muddle key.

YES NO

- -

Split the leaf page.
Records with kevs < middle key go to the left leaf page.
Records with kevs == middle key go to the right leaf page.

W 9 -

Sphit the index page.

Keyvs < middle key go to the left index page.

Keys = nuddle Key go to the right index page.

The muddle key goes to the next (higher level) index.

YES YES

SRR

IF the next level index page 1s full, contmue splitting the mndex
pages.

12/18/2024 B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT 6/16

NN VL,
S0 MR
G

b
- -

B+ tree

Add record with key 28

/yzs 50{5\
/ | \ \
10115]20/ | 25/28{30 50({55(60/65] [75(80(85| 90

12/18/2024

B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT

7/16

ANV
!SND. *‘/Z‘ ~ o
. B + tre e TS

Adding a record when the leaf page is full but the index page is not

Next, we'te going to msert a record with a key value of 70 into our B+ tree. This record should go in the leaf
page containing 30. 35. 60, and 65. Unfortunately this page 1s full. This means that we must split the page as
follows:

T eft T paf Pagp ight T eaf Pagp
50 35 I'c'i: €5 70

The middle key of 60 is placed m the mdex page between 30 and 75.

The following table shows the B+ tree after the addition of 70.

12/18/2024 B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT 8/16

~—

92 5 >

k’:\::y B + tr e e IrUTIONS

Add Record with Key 70

LI125],150}| 60475

30

il
=4
<)
-}
(91
N
<)
N)
(94
N
(¢ 4]
U
Q)
w
i
o)
C
o
Jl
o
—
-
(84)
o0
)
o
Ul
£
(]

Adding a record when both the leaf page and the index page are full

As our last example. we're going to add a record contaming a key value of 95 to our B+ tree. This record
belongs in the page containing 75. 80. 85, and 90. Since this page 1s full we split 1t into two pages:

Left Leaf Page Right Leaf Page

12/18/2024 B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT 9/16

N -~
~»

o5 u\j\y B) tre e IS

75 80 g3 30 55

The middle key ,85,rises to the index page. Unfortunately the index page is also
full, so we split the index page

Left Index Page Right Index Page New Index Page

25 50 15 85 50

12/18/2024 B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT 10/16

~—

92 5 >

k’:\::y B + tr e e IrUTIONS

The following figure illustrates the addition of the record containing
95 to the B + Tree

Add Record with Key 95

5 0 -

// \
/szl‘i\OI T %LLU
28130 55 60| 65

5 [10|15]20]|| 25 50

70

20|85

(\
U\

80

~J
wn

12/18/2024 B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT 11/16

gf g
B

Leaf Page
Below Fill
Factor

B+ tree

The delete algorithm for the B + Tree

Index Page
Below Fill
Factor

Action

NO

YES

YES

12/18/2024

Delete the record from the leaf page. Arrange keys in ascending order
NO to fill void. If the key of the deleted record appears in the index page.
use the next key to replace it.

9 OO, SLOMGERP KIS (IO (S L (TSR K DATIERRY o SETRGEPEPL SPROLARGL (R X Sty o
U UHHULIE HE IS PAEC dlel 1S S101110E,. U IHHNES HE HIUCA prage (v

NO
reflect the change
1. Combine the leaf page and its sibling.
2. Adjust the index page to reflect the change.
VES 3. Combine the index page with its sibling.

Continue combining index pages until you reach a page with the
correct fill factor or vou reach the root page.

B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT

~»

12/16

[W

Tryronls

12/18/2024

B+ tree

Delete Record with key 70

160

TN

/

7

10

15

20

500
\\\
25128130 5

0

5

ST, [85]
| |
5 6

0

>l |

75

80

85

90

95

B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT

~»

13/16

~—

Tryronls

AN -
@ S'S

B L t r e e IrUTIoNS

Delete Record with key 25

o =l
I

5 [10({15(20||28({30 50]55 60| 65

7580 85(90{95

12/18/2024 B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT 14/16

Assessment o

1. Consider a B+-tree in which the maximum number of keys in a node is 5.
What is the minimum number of keys in any non-root node?
1

OO w>

2
3
4
. B+ trees are preferred to binary trees in databases because

. Disk capacities are greater than memory capacities

2

A

B. Disk access is much slower than memory access

C. Disk data transfer rates are much less than memory data transfer rates
D

. Disks are more reliable than memory

P are the leaf nodes in a B+ tree

12/18/2024 B tree/231TT201_DS /VINODHINI.B/CSE/SNSCT 15/16

> .
CIErrunions

References

1. M. A. Weiss, “Data Structures and Algorithm Analysis in C”,
Pearson Education, 2" Edition, 2002.

2. A. V. Aho, J. E. Hopcroft and J. D. Ullman, “Data Structures and
Algorithms”, Pearson Education, 2" Edition, 2007

3. Ashok Kamthane, "' Data Structures Using C ", Pearson Education,
2nd Edition, 2012.

4. Sahni Horowitz, “Fundamentals of Data Structures in C”’Universities
Press; Second edition 2008

12/18/2024 B tree/231TT201_DS /VINODHINI.B/CSE/SNSCT 16/16

L,

¢ BEY >

e IOICNE;
2 S 2

Thank You

12/18/2024 B tree/23ITT201_DS /VINODHINI.B/CSE/SNSCT 17/16

