

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 23ITT201 DATA STRUCTURES

II YEAR/ III SEMESTER

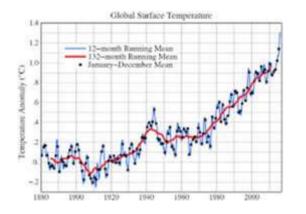
UNIT – IV MULTIWAY SEARCH TREES AND GRAPH

Topic: *GRAPH*

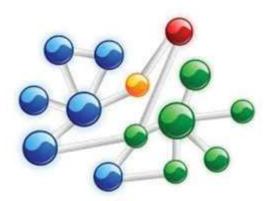
12/18/2024

SNS COLLEGE OF TECHNOLOGY

(Autonomous) COIMBATORE-35



UNIT IV

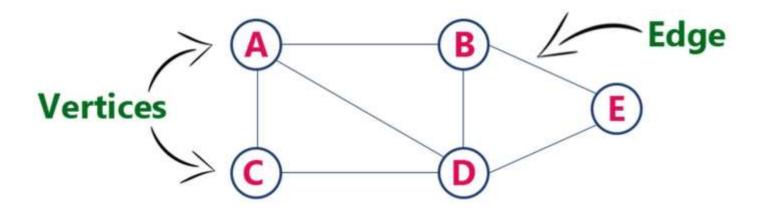


12/18/2024

- Graph is a collection of vertices and arcs which connects vertices in the graph
- ➢ Graph is a collection of nodes and edges which connects nodes in the graph
- Generally, a graph G is represented as G = (V, E), where V is set of vertices and E is set of edges.

Introduction

The following is a graph with 5 vertices and 6 edges. This graph G can be defined as G = (V, E)Where $V = \{A,B,C,D,E\}$ and $E = \{(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)\}.$



Vertex

A individual data element of a graph is called as Vertex. **Vertex** is also known as **node**. In above example graph, A, B, C, D & E are known as vertices

Edge

An edge is a connecting link between two vertices. **Edge** is also known as **Arc**. An edge is represented as (starting Vertex, ending Vertex).

The link between vertices A and B is represented as (A,B). In above example graph, there are 7 edges (i.e., (A,B), (A,C), (A,D), (B,D), (B,E), (C,D), (D,E)).

16IT201/Data Structuress- Unit -III/Graph/B.Vinodhini

GRAPH/23ITT201/DS/Dr.B.Vin

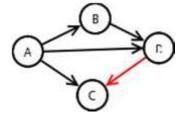
odhini/ASP/CSE

12/18/2024

- Undirected Edge An undirected edge is a bidirectional edge. If there is a undirected edge between vertices A and B then edge (A, B) is equal to edge (B, A).
- Directed Edge A directed edge is a unidirectional edge. If there is a directed edge between vertices A and B then edge (A , B) is not equal to edge (B , A).
- Weighted Edge A weighted egde is an edge with cost on it.
 Undirected Graph
- A graph with only undirected edges is said to be undirected graph.

Directed Graph

- A graph with only directed edges is said to
- be directed graph.



16IT201/Data Structuress- Unit -III/Graph/B.Vinodhini

GRAPH/23ITT201/DS/Dr.B.Vin

odhini/ASP/CSE

12/18/2024

Mixed Graph

• A graph with undirected and directed edges is said to be mixed graph.

End vertices or Endpoints

• The two vertices joined by an edge are called the end vertices (or endpoints) of the edge.

Origin

• If an edge is directed, its first endpoint is said to be origin of it.

Destination

• If an edge is directed, its first endpoint is said to be origin of it and the other endpoint is said to be the destination of the edge.

16IT201/Data Structuress- Unit -III/Graph/B.Vinodhini

12/18/2024

Adjacent

If there is an edge between vertices A and B then both A and B are said to be adjacent. In other words, Two vertices A and B are said to be adjacent if there is an edge whose end vertices are A and B. **Incident**

An edge is said to be incident on a vertex if the vertex is one of the endpoints of that edge.

Outgoing Edge

A directed edge is said to be outgoing edge on its orign vertex. **Incoming Edge**

A directed edge is said to be incoming edge on its destination vertex.

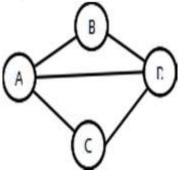
16IT201/Data Structuress- Unit -III/Graph/B.Vinodhini

Degree of a Node

- ➢ In-degree: Number of edges pointing to a node
- Out-degree: Number of edges pointing from a node
- Path: sequence of vertices in which each pair of successive vertices is connected by an edge
 Cycle: a path that starts and ends on the same vertex
 Simple path: a path that does not cross itself That is, no vertex is repeated (except first and last)

Simple paths cannot contain cycles Length of a path: Number of edges in the

path Sometimes the sum of the weights of the edges

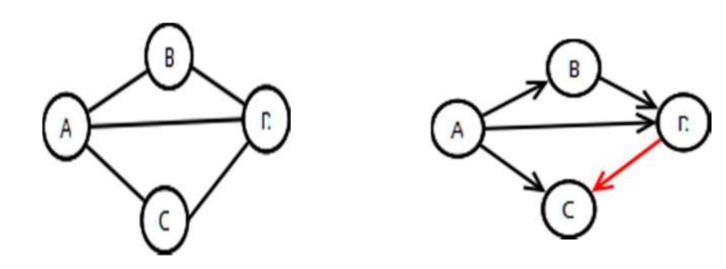


16IT201/Data Structuress- Unit -III/Graph/B.Vinodhini

GRAPH/23ITT201/DS/Dr.B.Vin

odhini/ASP/CSE

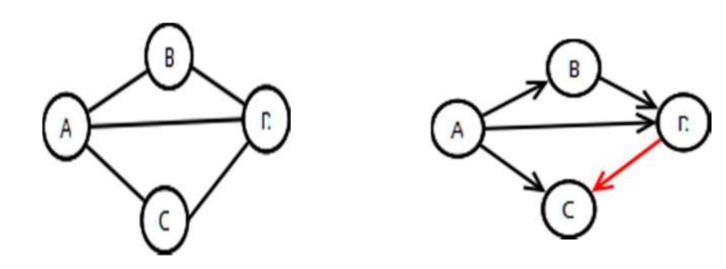
A Cyclic graph contains cycles Example: roads (normally) An acyclic graph contains no cycles



16IT201/Data Structuress- Unit -III/Graph/B.Vinodhini

12/18/2024

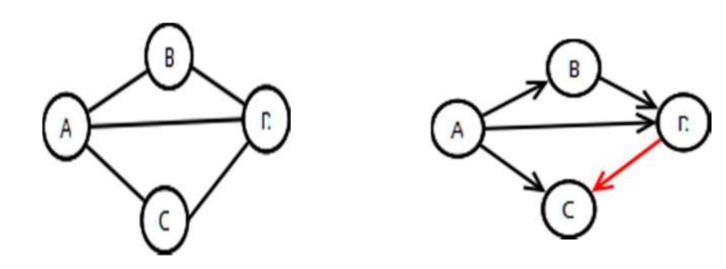
A Cyclic graph contains cycles Example: roads (normally) An acyclic graph contains no cycles



16IT201/Data Structuress- Unit -III/Graph/B.Vinodhini

12/18/2024

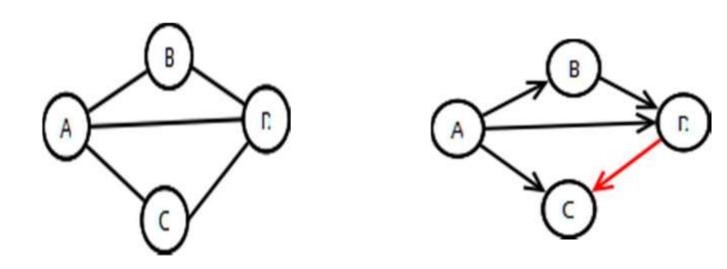
A Cyclic graph contains cycles Example: roads (normally) An acyclic graph contains no cycles



16IT201/Data Structuress- Unit -III/Graph/B.Vinodhini

12/18/2024

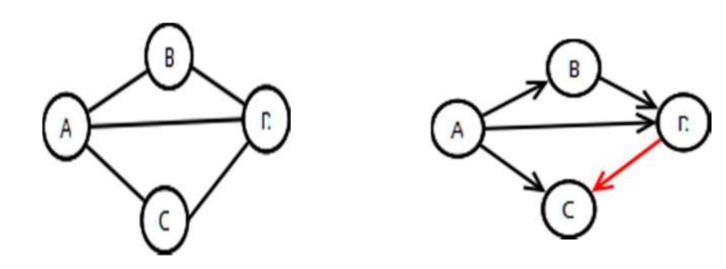
A Cyclic graph contains cycles Example: roads (normally) An acyclic graph contains no cycles



16IT201/Data Structuress- Unit -III/Graph/B.Vinodhini

12/18/2024

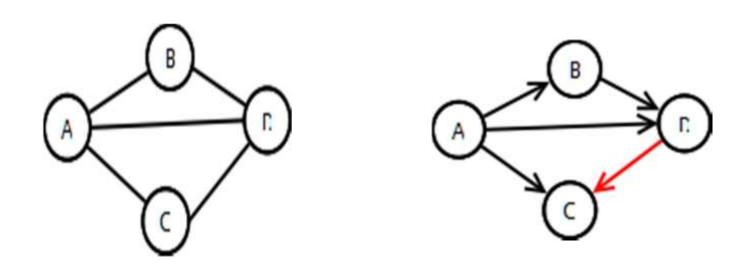
A Cyclic graph contains cycles Example: roads (normally) An acyclic graph contains no cycles



16IT201/Data Structuress- Unit -III/Graph/B.Vinodhini

12/18/2024

A Cyclic graph contains cycles Example: roads (normally) An acyclic graph contains no cycles



Degree

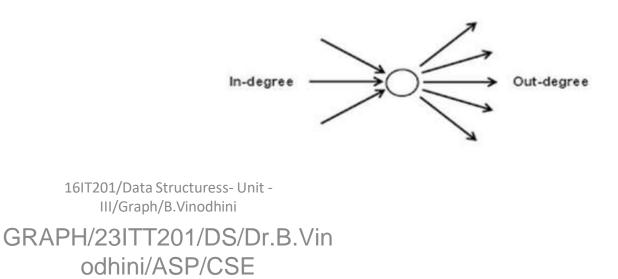
• Total number of edges connected to a vertex is said to be degree of that vertex.

Indegree

• Total number of incoming edges connected to a vertex is said to be indegree of that vertex.

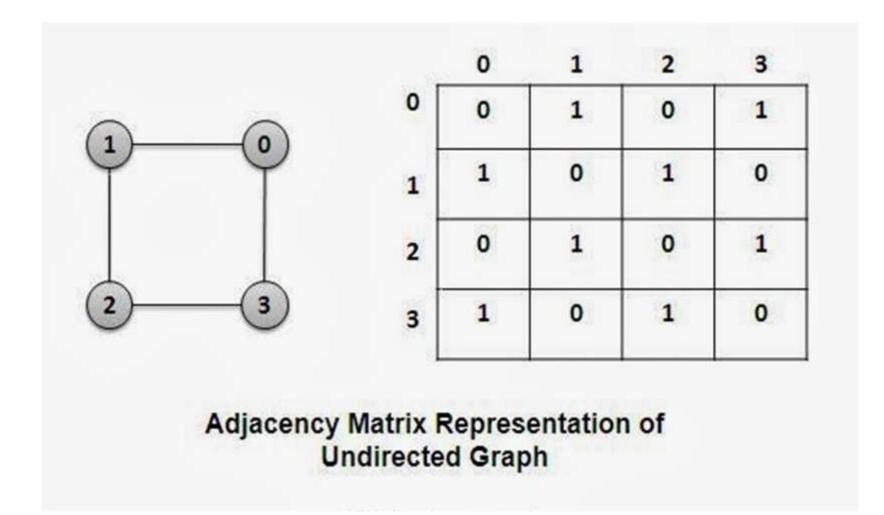
Outdegree

• Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex.



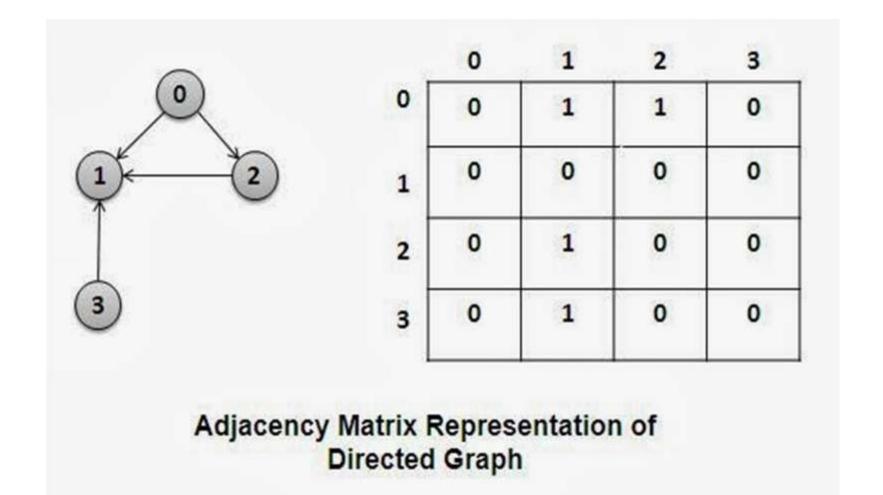
Data Structures for Representing Graphs Adjacency Matrix –Undirected Graph

• Adjacency matrix



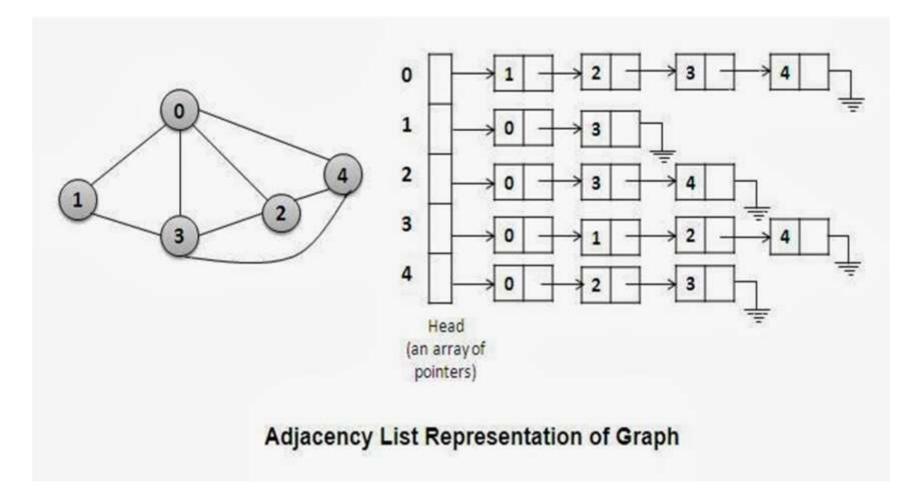
12/18/2024

Data Structures for Representing Graphs Adjacency Matrix –Directed Graph

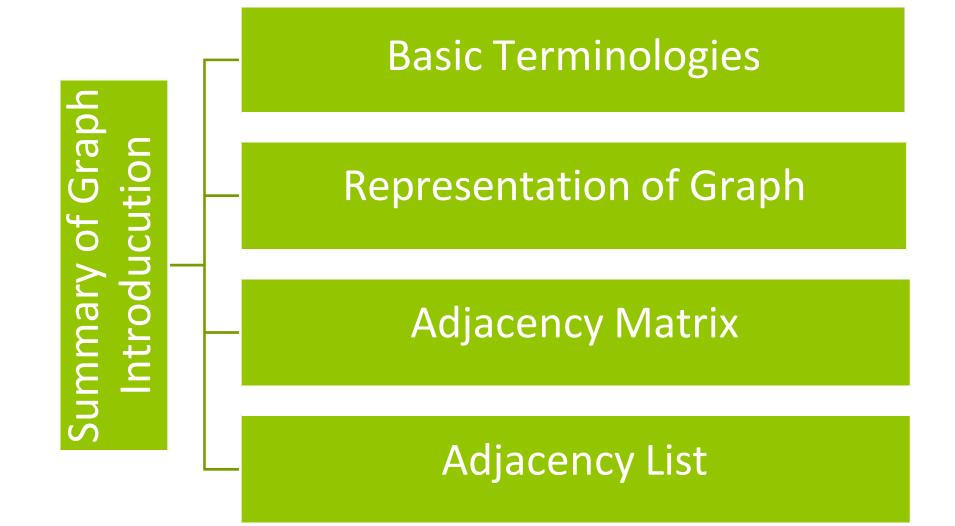


12/18/2024

Data Structures for Representing Graphs Adjacency List



12/18/2024



12/18/2024

SNS COLLEGE OF TECHNOLOGY

(Autonomous) COIMBATORE-35

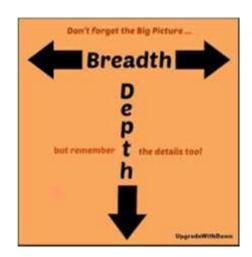
Recap

Graphs

- ➤ Basic Terminologies
- ➢ Representation of Graph

SNS COLLEGE OF TECHNOLOGY

(Autonomous) COIMBATORE-35

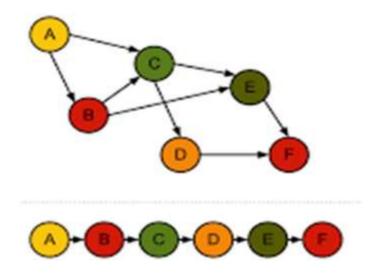


12/18/2024

Topological Sort

Linear ordering of Vertices in a directed acyclic graph such that if there is a path from Vi to Vj then Vj appears after Vi in the linear ordering

TOPOLOGICAL SOFT



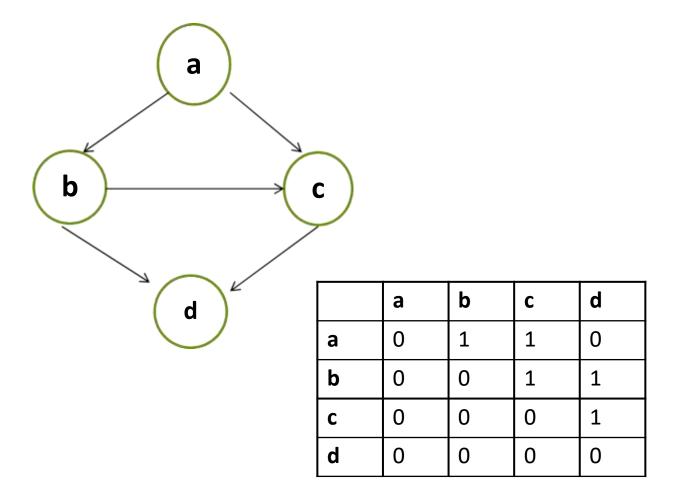
Steps in Topological Sort

Step 1	Find the indegree for every vertex
Step 2	Place the vertices whose indegree is '0' on the empty queue
Step 3	Dequeue the vertex V and decrement the indegree's of all the adjacent vertices
Step 4	Enqueue the vertex on the queue, if its indegree falls to zero
Step 5	Repeat from step 3 until the queue becomes empty
Step 6	The topological ordering is the order in which the vertices dequeued

12/18/2024

Routine for Topological Sort					
Void Topsort(Graph G)	TopNum[V]=+counter;				
{	For each W adjacent to V				
Queue Q;	IF(Indegree[W]==0				
Int counter=0;	Enqueue(W,Q);				
Q=CreateQueue (Num Vertex)	}				
Makeempty(Q);	If(counter !=Num Vettex)				
For each vertex V	Error("Graph has a cycle");				
If (indegree[V]==0)	DisposeQueue(Q);				
Enqueue(V,Q);	}				
While(!IsEmpty(Q))					
{					
V=Dequeue(Q);					

Topological Sort - Example



12/18/2024

Indegree[a]=0Indegree[b]=1Indegree[c]=2Indegree[d]=2					
Enqueue the Vertex, whose Indegree is'0' Vertex 'a' is 0, so place it on the queue					
Dequeue the vertex 'a' from the queue and decrement the indegree's of all the adjacent vertices'b' & 'c' Hence, Indegree[b]=0 and Indegree[c]=1 Now,Enqueue the vertex 'b' as its indegree becomes zero					
Dequeue the vertex 'b' from Q and decrement the indegree's of its adjacent vertices'c' & 'd' Hence, Indegree[c]=0 and Indegree[d]=1 Now,Enqueue the vertex 'c' as its indegree becomes					

Steps in Topological Sort

Step 5	Dequeue the vertex 'c' from Q and decrement the indegree's of its adjacent vertices'd' Hence, Indegree[d]=0 Now,Enqueue the vertex 'd' as its indegree becomes zero
Step 6	Dequeue the vertex 'd'
Step 7	As the queue becomes empty, topological ordering is performed , which is nothing but the order in which the vertices are dequeued

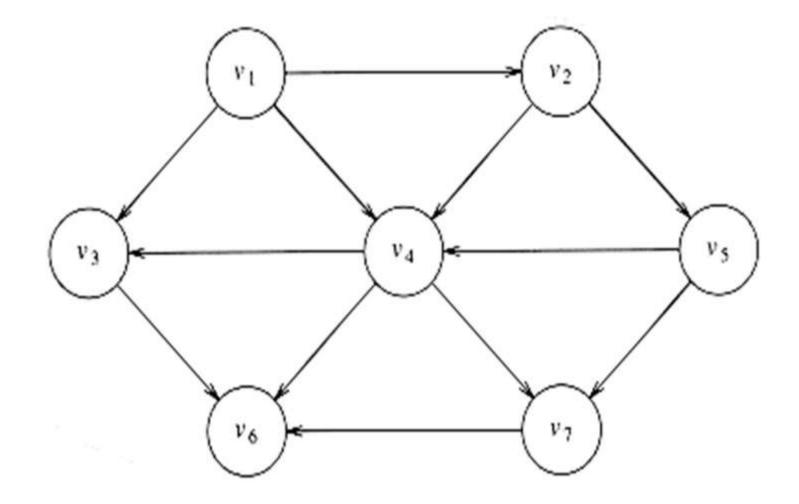
12/18/2024

Result of the Graph

Vertex	1	2	3	4
а	0	0	0	0
b	1	0	0	0
с	2	1	0	0
d	2	2	1	0
Enqueue	а	b	С	d
Dequeue	a	b	С	d

12/18/2024

Example 2



12/18/2024

Result of the Graph

Indegree Before Dequeue #

Vertex 1 2 3 4 5 6 7

v_1	0	0	0	0	0	0	0
v_2	1	0	0	0	0	0	0
v_3	2	1	1	1	0	0	0
v_4	3	2	1	0	0	0	0
v_5	1	1	0	0	0	0	0
v_6	3	3	3	3	2	1	0
v_7	2	2	2	1	0	0	0

enqueue v_1 v_2 v_5 v_4 v_3 v_7 v_6

dequeue v_1 v_2 v_5 v_4 v_3 v_7 v_6

12/18/2024

•

Linear Ordering of Vertices

Find the Indegree of all vertices

Topological sort algorithim

Topological ordering of vertices

12/18/2024