Biconnectivity

- -a_.
~»
FITU 1017
WWW.SNsSgroups.com

* DFS Applications

= Undirected graph

= Test if graph is connected

= Run DFS from any vertex and
then check if any vertices not
visited

= Depth-first spanning tree

« Add edge (v,w) to spanning
tree if w not yet visited
(minimum spanning tree?)

=« If graph not connected, then
depth-first spanning forest

@)
C—0© &
W)

SNSCT-CSE/23ITT201-DS Page 1

Biconnectivity

DFS Applications

= Remembering the DFS traversal order is important
for many applications

= Let the edges (v,w) added to the DF spanning tree
be directed

= Add a directed back edge (dashed) if

« W is already visited when considering edge (v,w), and
« Vv is already visited when considering reverse edge (w,v)

*Bicon nectivity

= A connected, undirected
graph is biconnected if the 75
graph is still connected after ‘
removing any one vertex b 7 gl
= Le., when a"node” fails, there -
is always an alternative route : N
= If a graph is not biconnected,
the disconnecting vertices are -~ \
called articulation points ‘
« Critical points of interest in = i

many applications Biconnected?
Articulation points?

SNSCT-CSE/23ITT201-DS Page 2

Biconnectivity

DFS Applications: Finding
Articulation Points

= From any vertex v, perform DFS and number vertices
as they are visited
« Num(v) is the visit number
= Let Low(v) = lowest-numbered vertex reachable from
v using 0 or more spanning tree edges and then at
most one back edge
« Low(Vv) = minimum of
= Num(v)
= Lowest Num(w) among all back edges (v,w)
= Lowest Low(w) among all tree edges (v,w)

= Can compute Num(v) and Low(v) in O(|E|+]|V|) time

—

SNSCT-CSE/23ITT201-DS Page 3

Biconnectivity

DFS Applications: Finding
*Articulation Points (Example)

1 S Depth-first tree
_/ ./ starting at A with
| ‘ Num/Low values:

Original Graph

SNSCT-CSE/23ITT201-DS Page 4

Biconnectivity

DFS Applications: Finding
Articulation Points

= Root is articulation point iff it has more
than one child

= Any other vertex v is an articulation
point iff v has some child w such that
Low(w) = Num(v)
= I.e., is there a child w of v that cannot
reach a vertex visited before v?

=« If yes, then removing v will disconnect w
(and v is an articulation point)

SNSCT-CSE/23ITT201-DS Page 5

Biconnectivity

DFS Applications: Finding
Articulation Points (Example)

S/ &/ Depth-first tree
’ l starting at C with
Num/Low values:

Original Graph

DFS Applications: Finding
Articulation Points

= High-level algorithm
= Perform pre-order traversal to compute Num
= Perform post-order traversal to compute Low
=« Perform another post-order traversal to detect
articulation points
= Last two post-order traversals can be
combined

= In fact, all three traversals can be combined
in one recursive algorithm

SNSCT-CSE/23ITT201-DS Page 6

Biconnectivity

*Implementation
-

* Assign num and compute parents.
o §
void Graph::assignNum(Vertex v)

{

v.num = counter++;
v.visited = true;
for each Vertex w adjacent to v
if(!'w.visited)
{
w.parent = v;
assignNum(w);

SNSCT-CSE/23ITT201-DS Page 7

Biconnectivity

/**

* Assign Tow; also check for articulation points.
b {

void Graph::assignlLow(Vertex v)

{

v.low = v.num; // Rule 1
for each Vertex w adjacent to v

{

Check for root
omitted.

if(w.num > v.num) // Forward edge
{
assignlow(w);
if(w.low >= v.num)
cout << v << " js an articulation point" << endl;
v.low = min(v.low, w.low); // Rule 3
}
else
if(v.parent !=w) // Back edge
v.low = min(v.low, w.num); // Rule 2

SNSCT-CSE/23ITT201-DS Page 8

Euler Circuits

i Euler Circuits

= Puzzle challenge

= Can you draw a figure using a pen,
drawing each line exactly once, without
lifting the pen from the paper?

= And, can you finish where you started?

* Euler Circuits

= Solved by Leonhard Euler
in 1736 using a graph
approach (DFS)

= Also called an “Euler path”
or “Euler tour”

=« Marked the beginning of
graph theory

SNSCT/CSE/23ITT201/DS,/B.Vinodhin Page 1

Euler Circuits

iEuIer Circuit Problem

= Assign a vertex to each intersection in the
drawing

= Add an undirected edge for each line
segment in the drawing

= Find a path in the graph that traverses each
edge exactly once, and stops where it started

S5

*Euler Circuit Problem

= Necessary and sufficient conditions
=« Graph must be connected
= Each vertex must have an even degree

= Graph with two odd-degree vertices can have
an Euler tour (not circuit)

= Any other graph has no Euler tour or circuit

SNSCT/CSE/23ITT201/DS,/B.Vinodhin Page 2

-

Euler Circuits

*Euler Circuit Problem

= Algorithm

= Perform DFS from some vertex v until you
return to v along path p

= If some part of graph not included,
perform DFS from first vertex v’ on p that
has an un-traversed edge (path p’)

= Splice p’into p
= Continue until all edges traversed

iEuler Circuit Example

!

Start at vertex 5.
Suppose DFS visits 5, 4, 10, 5.

SNSCT/CSE/23ITT201/DS,/B.Vinodhin Page 3

Euler Circuits

*Euler Circuit Example (cont.)

Graph remaining after 5, 4, 10, 5:

Splicing into previous path: 5,4, 1,3,7,4,11,10,7, 9, 3, 4, 10, 5.

*Euler Circuit Example (cont.)

Graph remaining after 5,4,1,3,7,4,11,10,7,9, 3, 4, 10, 5:

®
Start at vertex 3.

Suppose DFS visits 3, 2, 8, 9, 6, 3.
Splicing into previous path: 5,4,1,3,2,8,9,6,3,7,4,11,10,7,9, 3,4, 10, 5.

SNSCT/CSE/23ITT201/DS,/B.Vinodhin Page 4

Euler Circuits

iEuIer Circuit Example (cont.)

Graph remaining after 5,4, 1,3,2,8,9,6,3,7,4,11,10,7,9, 3,4, 10, 5:

®

® ® ®

© 9 @ 10

e ©

Start at vertex 9.

Suppose DFS visits 9, 12, 10, 9.

Splicing into previous path: 5,4, 1, 3,2,8,9,12,10,9,6,3,7,4,11,10, 7,9, 3,4, 10, 5.
No more un-traversed edges, so above path is an Euler circuit.

i Euler Circuit Algorithm

= Implementation details

= Maintain circuit as a linked list to support
O(1) splicing

= Maintain index on adjacency lists to avoid
repeated searches for un-traversed edges

= Analysis
= Each edge considered only once
= Running time is O(|E|+|V])

SNSCT/CSE/23ITT201/DS,/B.Vinodhin Page 5

