

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accrediated by NAAC with 'A+' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

Course Name: 23BMT201 & Circuit Analysis

II Year : III Semester

Unit III - THREE PHASE SYSTEM

Topic : Phasor relationship for R, L, and C,

Resistive Load

- Phasor Diagram: shows the instantaneous • phase of either voltage or current.
- For a resistor, the current follows the voltage, so the voltage and current are in phase ($\phi = 0$).

• If
$$v_R = V_R \sin \omega_d t$$

• Then
$$i_R = I_R \sin \omega_d t = \frac{V_R}{R} \sin \omega_d$$

Capacitive Load

• For a capacitive load, the voltage across the capacitor is proportional to the charge $v_{c} = \frac{q}{c} = \frac{Q}{c} \sin \omega_{d} t$

$$i_C = \frac{dq}{dt} = \omega_d C V_C \cos \omega_d t$$

• In analogy to the resistance, which is the proportionality constant between current and voltage, we define the "capacitive reactance" as $X_{c} = \frac{1}{\omega_{d}C}$

$$i_C = \frac{V_C}{X_C} \cos \omega_d t$$

- So,
 - The phase relationship is that $\phi = -90^{\circ}$, and current leads voltage.

Inductive Load

For an inductive load, the voltage across the inductor is ulletproportional to the time derivative of the current

$$v_L = L \frac{di_L}{dt}$$

But the current is the time derivative of the charge ullet

$$i_{L} = \frac{V_{L}}{L} \int \sin \omega_{d} t \, dt = -\left(\frac{V_{L}}{\omega_{d} L}\right) \cos \omega_{d} t$$

Again in analogy to the resistance, which is the proportionality constant between current and voltage, we define the "inductive reactance" as

So,
$$i_L = -\frac{V_L}{X_L} \cos \omega_d t$$

$$X_L = \omega_d L$$

The phase relationship is that $\phi = +90^{\circ}$, and current lags voltage.

Inductive Load

Circuit Element	Symbol	Resistance or Reactance	Phase of Current	Phase Constant	Amplitude Relation
Resistor	R	R	In phase with v _R	0º (0 rad)	$V_R = I_R R$
Capacitor	С	$X_{C}=1/w_{d}C$	Leads v_R by 90 ^o	-90º (-p/2)	$V_C = I_C X_C$
Inductor	L	$X_L = w_d L$	Lags v _R by 90 ^º	+90º (p/2)	$V_L = I_L X_L$

