

#### **SNS COLLEGE OF TECHNOLOGY** (AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accrediated by NAAC with 'A+' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

## **Department of Biomedical Engineering**

#### **Course Name: 23BMT201 & Circuit Analysis**

#### **II Year : III Semester**

**Unit III - THREE PHASE SYSTEM** 

**Topic :** Power Flow Analysis









## **Possible Three-Phase Load Configurations:**

- Depending on the end application, a three-phase load can be either
  - Wye-connected (or)
  - Delta-connected.
- A balanced load is one in which the phase impedances are equal in • magnitude and in phase.
  - However, a wye- or delta-connected load is said to be unbalanced if the phase impedances are not equal in magnitude or phase.

**23**BMT201 / CIRCUIT ANALYSIS / Unit 3 / Dr.R.Karthick / HoD-BME







### **Possible Three-Phase Load Configurations:**

For a balanced wye-connected load,

 $Z_1 = Z_2 = Z_3 = Z_Y$ 

where  $Z_{Y}$  is the load impedance per phase.

**23**BMT201 / CIRCUIT ANALYSIS / Unit 3 / Dr.R.Karthick / HoD-BME

С

a

b

C









### **Possible Three-Phase Load Configurations:**

For a balanced delta-connected load,

 $Z_a = Z_b = Z_c = Z_\Delta$ 

where  $Z_{\Delta}$  is the load impedance per phase. Impedance relation between Y and  $\Delta$  connected load:

$$Z_{\Delta} = 3 \times Z_{\gamma} \text{ or } Z_{\gamma} = \frac{1}{3} \times Z_{\Delta}$$

23BMT201 / CIRCUIT ANALYSIS / Unit 3 / Dr.R.Karthick / HoD-BME





### $\Delta$ -connected load



### **Possible Three-Phase Load Configurations:**

For a balanced delta-connected load,

 $Z_a = Z_b = Z_c = Z_\Delta$ 

where  $Z_{\Delta}$  is the load impedance per phase. Impedance relation between Y and  $\Delta$  connected load:

$$Z_{\Delta} = 3 \times Z_{\gamma} \text{ or } Z_{\gamma} = \frac{1}{3} \times Z_{\Delta}$$

23BMT201 / CIRCUIT ANALYSIS / Unit 3 / Dr.R.Karthick / HoD-BME





### $\Delta$ -connected load



### **Balanced Wye-Wye Connection:**

A balanced Y-Y system is a three-phase system with a balanced Y- connected source and a balanced Y-connected load.

> A balanced Y-Y system, showing the source, line, and load impedances

> > **23**BMT201 / CIRCUIT ANALYSIS / Unit 3 / Dr.R.Karthick / HoD-BME

 $V_{cn}$ 

Zs

С









## **Balanced Wye-Wye Connection:**

• By lumping the impedances together,

 $Z_{Y} = Z_{S} + Z_{l} + Z_{L}$ 

•  $Z_s$  and  $Z_l$  are often very small compared with  $Z_L$ , so one can assume that  $Z_Y = Z_L$  if no source or line impedance is given



**23**BMT201 / CIRCUIT ANALYSIS / Unit 3 / Dr.R.Karthick / HoD-BME

Balanced Y-Y connection with  $Z_Y = Z_s + Z_l + Z_L$ 



## **Balanced Wye-Wye Connection:**

Assuming the positive sequence, the phase voltages (or line-to neutral) voltages) are,

$$V_{an} = V_p \angle 0^{\text{I}}, V_{bn} = V_p \angle -120, V_{cn} = V_p \angle +120$$

The line-to-line voltages or simply line voltages  $V_{ab}$ ,  $V_{bc}$ , and  $V_{ca}$  are related to the phase voltages as,  $V_{ab} = V_{an} + V_{nb} = V_{an} - V_{bn} = V_p \angle 0^\circ - V_p \angle -120^\circ$  $=V_p\left(1+\frac{1}{2}+j\frac{\sqrt{3}}{2}\right)=\sqrt{3}V_p\angle 30^\circ$ 









## Balanced Wye-Wye Connection:

Similarly, one can obtain:

$$V_{bc} = V_{bn} - V_{cn} = \sqrt{3}V_p \angle -90^\circ$$

$$V_{ca} = V_{cn} - V_{an} = \sqrt{3}V_p \angle -210^{\circ}$$

Thus, the magnitude of the line voltages is,

$$V_L = \sqrt{3}V_p$$

$$V_{p} = |V_{an}| = |V_{bn}| = |V_{cn}| \text{ and}$$
$$V_{L} = |V_{ab}| = |V_{bc}| = |V_{ca}|$$







**23**BMT201 / CIRCUIT ANALYSIS / Unit 3 / Dr.R.Karthick / HoD-BME







Balanced Wye-Wye Connection: By applying KVL to each phase, line currents are obtained:



$$I_{b} = \frac{V_{bn}}{Z_{v}} = \frac{V_{an} \angle -120^{\circ}}{Z_{v}} = I_{a} \angle -120^{\circ}$$

$$I_{c} = \frac{V_{cn}}{Z_{Y}} = \frac{V_{an} \angle -240^{\circ}}{Z_{Y}} = I_{a} \angle -240^{\circ}$$

a

23BMT201 / CIRCUIT ANALYSIS / Unit 3 / Dr.R.Karthick / HoD-BME





## **Balanced Wye-Wye Connection:**

Now, one can readily infer that the line currents add up to zero,

$$I_a + I_b + I_c = 0$$

Therefore,

$$I_n = -(I_a + I_b + I_c) = 0 \qquad \text{(or)}$$

$$V_{nN} = Z_n I_n = 0$$

- The line current is the current in each line, the phase current is the current in each phase of the source or load.
- In the Y-Y system, the line current is the same as the phase current. 23BMT201 / CIRCUIT ANALYSIS / Unit 3 / Dr.R.Karthick / HoD-BME



