
Rehashing

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 1

Hash tables offer exceptional performance when not overly full.

This is the traditional dilemma of all array-based data structures:

 Make the table too small, performance degrades and the table may overflow

 Make the table too big, and memory gets wasted.

Rehashing or variable hashing attempts to circumvent this dilemma by expanding the hash table

size whenever it gets too full.

Table size : M > N

For small load factor the performance is much better,

than for N/M close to one.

Best choice: N/M = 0.5

When N/M > 0.75 – rehashing

Build a second table twice as large as the original and rehash there all the keys of the original

table.

 Expensive operation,

 running time O(N)

 However, once done, the new hash table will have good performance.

1. Expanding the hash Table

For example, using open addressing (linear probing) on a table of integers with hash(k)=k

(assume the table does an internal % hSize):

We know that performance degrades when λ > 0.5

Solution: rehash when more than half full

So if we have this table, everything is fine.

Rehashing

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 2

But if we try to add another element (24), then more than half the slots are occupied…

So we expand the table, and use the hash function to relocate the elements within the larger

table…

In this case, I've shown the hash table size doubling, because that's easy to do, despite the fact

that it doesn't lead to prime-number sized tables. If we were going to use quadratic probing, we

would probably keep a table of prime numbers on hand for expansion sizes, and we would

probably choose a set of primes such that each successive prime number was about twice the

prior one.

2. Saving the Hash Values

The rehashing operation can be quite lengthy. Luckily, it doesn't need to be done very often.

We can speed things up somewhat by storing the hash values in the table elements along with the

data so that we don't need to recompute the hash values. Also, if we structure the table as a

vector of pointers to the hash elements, then during the rehashing we will only be copying

pointers, not the entire (potentially large) data elements.

Extendible Hashing

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 1

Extendible Hashing

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 2

Extendible Hashing

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 3

Extendible Hashing

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 4

Extendible Hashing

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 5

	1. Expanding the hash Table
	2. Saving the Hash Values

