Rehashing

Hash tables offer exceptional performance when not overly full.
This is the traditional dilemma of all array-based data structures:

o Make the table too small, performance degrades and the table may overflow
o Make the table too big, and memory gets wasted.

Rehashing or variable hashing attempts to circumvent this dilemma by expanding the hash table
size whenever it gets too full.

Table size: M >N

For small load factor the performance is much better,
than for N/M close to one.

Best choice: N/M = 0.5

When N/M > 0.75 — rehashing

Build a second table twice as large as the original and rehash there all the keys of the original
table.

Expensive operation,
running time O(N)

However, once done, the new hash table will have good performance.

1. Expanding the hash Table

For example, using open addressing (linear probing) on a table of integers with hash (x) =k
(assume the table does an internal ¢ nhsize):

We know that performance degrades when A > 0.5

Solution: rehash when more than half full

01 2 3 4
15| 6

So if we have this table, everything is fine.

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 1

Rehashing

But if we try to add another element (24), then more than half the slots are occupied...

01 2 3 4
15| 6 24

So we expand the table, and use the hash function to relocate the elements within the larger
table...

0123 456789
15 24| |6

In this case, I've shown the hash table size doubling, because that's easy to do, despite the fact
that it doesn't lead to prime-number sized tables. If we were going to use quadratic probing, we
would probably keep a table of prime numbers on hand for expansion sizes, and we would
probably choose a set of primes such that each successive prime number was about twice the
prior one.

2. Saving the Hash Values

01 2 3 4
T
Adams Baker
275 1029

The rehashing operation can be quite lengthy. Luckily, it doesn't need to be done very often.

We can speed things up somewhat by storing the hash values in the table elements along with the
data so that we don't need to recompute the hash values. Also, if we structure the table as a
vector of pointers to the hash elements, then during the rehashing we will only be copying
pointers, not the entire (potentially large) data elements.

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 2

Extendible Hashing

Extendible Hashing Example

» Suppose that g=2 and bucket size = 4.

« Suppose that we have records with these keys and hash
function h(key) = key mod 64:

key h(key) = key mod 64 bit pattern
288 32 100000
8 8 001000
1064 40 101000
120 56 111000
148 20 010100
204 12 001100
641 1 000001
700 60 111100
258 2 000010
1586 50 110010
44 44 101010

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 1

Extendible Hashing

Extendible Hashing Example —
directory and bucket structure

-2

o=
—

8 148
204
641
258

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE

Page 2

Extendible Hashing

Bucket and directory split

* Insert 68
« 68 mod 64 =4 =000100

0=3

o

000 | 001 | O10 | O11 | 100 (]1 lD 11

S T

| = | =2 I =2 1=2
641] 148 288 120
258 204 1064 700
68 44 1586

COSA=Ril il 17 -

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 3

Extendible Hashing

Bucket split — no directory split

¢ Insert 48 and 375
e 48 mod 64 =48 = 110000
e S7T5mod64=63=111111

g=3

000 | 001 | OTO0 | O11 | 100 | 101 | 110 | 111

P S S

| =3 [=3 =2 [=2 [=: 1=3
641 8 148 288 1586 120
238 204 1064 48 700
68 -+ 575
COSq 2P03 Week 12 4

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 4

Extendible Hashing

Multiple splits

* Insert 16, 18, 22, 23
* |6mod64=16=010000
e [8mod64=18=010010

010 Ol1
e 22mod 64=22=010110
e 23mod 64=23=010111 / \
_ : . : =3 [=3
Setting =3 gives this intermediate
(partial) picture... 148
‘ 16
Continue to next page... 2
I
22
23

Multiple splits, continued

» Setting 1=4 (and thus g=4) gives this final result...

0000|0001 (0010|0011 0100

vy L v
=3 =3 | =
641 8 16 148 288 1586 120
258 204 18 22 1064 48 700
68 23 44 575

SNSCT-CSE/23ITT201-DS/Dr.B.Vinodhini/ASP/CSE Page 5

	1. Expanding the hash Table
	2. Saving the Hash Values

