SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 231TT201 DATA STRUCTURES
Il YEAR/ 11l SEMESTER
UNIT -V SEARCHING,SORTING AND HASHING

Topic: Hashing

SHTIronls

« What is Hashing , Hash Function and Hash Table
« Collision
« Collision Resolution Techniques

* Separate Chaining

« Open Addressing
* Linear Probing
 Quadratic Probing
* Double Hashing

* Rehashing
 Extendible Hashing

g
ST TS

Hashing

12/19/2024 Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT 2/15

STIrUTIoNs

o

In data structures,

Hashing Is a well-known technique to search any particular element among
several elements.

It minimizes the number of comparisons while performing the search.
Advantage-

Hashing

Unlike other searching techniques,
Hashing is extremely efficient.

The time taken by it to perform the search does not depend upon the total number
of elements.

It completes the search with constant time complexity O(1).

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT 3/15

-~ ~

Hashing > S

Ad-
— - "

Two key terms in the concept of Hashing :Hash Table & Hash Function
Hashing Mechanism-

In hashing,

An array data structure called as Hash table is used to store the data items.
Based on the hash key value, data items are inserted into the hash table.

Hash Key Value-

Hash key value is a special value that serves as an index for a data item.
It indicates where the data item should be stored in the hash table.
Hash key value Is generated using a hash function.

12/19/2024 Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT 4/15

-~

~»

H aS h i n g SIS

Hash Function

Hashing Mechanism

12/19/2024 Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT 5/15

‘o @R -
o ¢ : .
'-._.;,\ - H aS h I n g I TIONS

Hash Function-

Hash function is a function that maps any big number or string to a small
Integer value.

Hash function takes the data item as an input and returns a small integer
value as an output.

The small integer value is called as a hash value.

Hash value of the data item is then used as an index for storing it into the
hash table.

12/19/2024 Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT 6/15

- -~

H a'S h i n g ;-“//r?:)//o;/s

e
Types of Hash Functions-
There are various types of hash functions available such as-
Mid Square Hash Function
Division Hash Function
Folding Hash Function etc

It depends on the user which hash function he wants to use.
Properties of Hash Function-
It is efficiently computable.
It minimizes the number of collisions.

It distributes the keys uniformly over the table.

12/19/2024 Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT 7/15

Hashing_Collision

S e

Collision in Hashing-

In hashing,

« Hash function is used to compute the hash value for a key.
s Hash value is then used as an index to store the key in the hash table.

+ Hash function may return the same hash value for two or more keys.

it iz called as a Collision.

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT

When the hash value of a key maps to an already occupied bucket of the hash table,

Situation: In which
the hash function
returns the same
hash key for more
than one record

8/15

S e

Hashing

 Collision Resolution Technigues-

 Collision Resolution Techniques are the techniques used for resolving or
handling the collision.

* Collision resolution techniques are classified as-

Collision Resolution Techniques

| } Rehashing
Separate Chaining Open Addressing EXtendibIe Hashing
(Open Hashing) (Closed Hashing)
)

—3 |inear Probing

—> Quadratic Probing

—» Double Hashing
12/19/2024 Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT 9/15

Trinonls

Hashing

Separate Chaining-

To handle the collision,

= This technique creates a linked list to the slot for which collision occurs.
= The new key is then inserted in the linked list.
= These linked lists to the slots appear like chains.

« That is why, this technique is called as separate chaining.

Time Complexity-

For Searching-

= |n worst case, all the keys might map to the same bucket of the hash table.
= |n such a case, all the keys will be present in a single linked list.
= Sequential search will have to be performed on the linked list to perform the searc

« 50, time taken for searching in worst case is O(n).

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT 10/15

H a-S h i n g TrIrIon

For Deletion-

= In worst case, the key might have to be searched first and then deleted.

» [In worst case, time taken for searching is O(n).

= 5o, time taken for deletion in worst case is O(n).

Load Factor (a)-

Load factor (o) is defined as-

Number of elements present in the hash table

Load Factor (a) =
Total size of the hash table

If Load factor (a) = constant, then time complexity of Insert, Search, Delete = @(1)

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT 11/15

H a-S h i n g TrIrIon

Open Addressing-

In open addressing,

« Unlike separate chaining, all the keys are stored inside the hash table.

« Mo key is stored outside the hash table.

Technigues used for open addressing are-

» Linear Probing
« Quadratic Probing

* Double Hashing

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT 12/15

H a-S h i n g TrIrIon

Operations in Open Addressing-

Let us discuss how operations are performed in open addressing-

Insert Operation-

* Hash function is used to compute the hash value for a key to be inserted.

» Hash value is then used as an index to store the key in the hash table.

In case of collision,

 Probing is performed until an empty bucket is found.
« Once an empty bucket is found, the key is inserted.

* Probing is performed in accordance with the technique used for open addressing.

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT 13/15

H a-S h i n g TrIrIon

Search Operation-

To search any particular key,

Its hash value is obtained using the hash function used.

Using the hash value, that bucket of the hash table is checked.

If the required key is found, the key is searched.

Otherwise, the subsequent buckets are checked until the required key or an empty bucket is found.

The empty bucket indicates that the key is not present in the hash table.

Delete Operation-

» The key Is first searched and then deleted.

= After deleting the key, that particular bucket is marked as “deleted”.

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT 14/15

,\‘:;J *"“ -

o ¢ - ,

= H aS I n g ST TINTS
N 3

Open Addressing Technigues- Disadvantage-

Techniques used for open addressing are-

1. Linear Probing- The main problem with linear probing is Primary
clustering.

In linear probing, .
P g Many consecutive elements form groups.

When collision occurs, we linearly probe for the next _ _ :
bucket. Then, it takes time to search an element or to find an
empty bucket.

We keep probing until an empty bucket is found.
PP J Py Time Complexity-

Advantage-

_ Worst time to search an element in linear probing is
It is easy to compute. O (table size).

12/19/2024 Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT 15/15

H a-S h i n g TrIrIon

2. Quadratic Probing-

In quadratic probing,

;th

o When collision occurs, we probe for i¢'th bucket in it" iteration.

+ We keep probing until an empty bucket is found.

3. Double Hashing-

In double hashing,

* We use another hash function hash2({x) and look for i * hash2(x) bucket in it iteration.

* |t requires more computation time as two hash functions need to be computed.

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT 16/15

Hashing

Quadratic Probing

H.(key)=(Hash(key)+i?)

Double Hashing

It I1s a technique in which a second hash function is applied to the key
when a collision occurs. By applying the second hash function we will

get the number of position from the point of collision to insert

12/19/2024

H,(key)=Key mod Table size
H,(key)=M-(Key mod M)

Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT

17/15

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT

Hashing-Rehashing s

If the table gets too full, then

— The running time for the operationswill start taking too long

— Insertions might fail for open addressing hashing with quadraticresolution.
How to measure the degree of fullness?

— Define the load factor, A, of a hash table to be the ratio of the number of
elements in the hash table to the table size,

— Ifcanbe A>17?

0| 6
#® Rehashing: If the hash table gets too full, then ; L
=build another table that is about twice as big 3| 24
(with an associated new hash function) 4
=Scan down the entire original hash table, 5
computing the new hash value for each 6| 13

(nondeleted) element and inserting it in the
new table.

12/19/2024 Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT 19/15

H a-S h i n g OE,

* Forexample,

— Supposethe elements 13, 15, 24, and 6 are inserted into an open addressing
hash table of size 7.

— The hash function is hash(x) = x mod 7

— Suppose linear probingis used to resolve collisions. (i) = i.

® If 23 is inserted into the table, the resulting
table will be over 70 percent full.

0 6
Because the table is so full, the performance becomes 4 15
bad. For example, if we want to insert 20, we need to 5 23
search for almost the whole table. 3 24
4 20
5
6 13

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT 20/15

H a-S h i n g TrIrIon

An Example: Rehashing

0
* Rehashing: 1
— Create a new table 2
— The size of this tableis 17, because this is the first 3
prime that is twice as large as the old table size. 4
— The new hash function is then hash(x) = x mod 17. 5
— The old tableis scanned, and elements 6, 15, 23, 24, 6 6
and 13 are inserted into the new table. 7 23
8 24
9
10
11
0 6 12
1 15 13 13
2 23 14
3 24 15 15
4 16
5
6 13

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT 21/15

Extendible Hashing
msert(10010)
00 | o1 | 10 | 11 No room to
L/ I \ msert and no
@) 2) & adoption!
01101 10000 11001
10001 11110
10011
101{}1 -
ﬂ \\\ \‘\\ \i -
" ” 4 2 \ . \\-
< . : o . e Expand
000 001 010 011 100 101 110 111 din
ectory
Now, 1t’s just a normal split.
12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT 22/15

Tryronls

!
ST TS

Hashing

Extendible Hashing

+ Hashing technique for huge data sets
— optimizes to reduce disk accesses
— each hash bucket fits on one disk block
— better than B-Trees if order 1s not important

* Table contains
— buckets, each fitting in one disk block, with the data
— a directory that fits in one disk block used to hash to the

correct bucket

12/19/2024 Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT 23/15

Hashing

12/19/2024

Extendible Hash Table

* Directory contains entries labelled by & bits plus a
pointer to the bucket with all keys starting with its bits

» Each block contains keys+data matching on the first
J <k bits

directory for k=3
000 001 010 011 100 101 110 111

= = T~

@ (2) (3) 3) @)
00001 01001 10001 10101 11001
00011 01011 10011 10110 11011
00100 01100 10111 11100
00110 11110

Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT

24/15

S e

Hashing

Inserting (easy case)
insert(11011)

000 | 001 | 010 | O11 100 | 101 | 110 | 111

12/19/2024

—

*f//f’

I

Ty

(2) 2) (3) (3) (2)
00001 01001 10001 10101 11001
00011 01011 10011 10110 11100
00100 01100 10111 11110
00110

000 | 001 | 010 | O11 100 | 101 | 110 | 111

(2) 2) (3) (3) (2)
00001 01001 10001 10101 11001
00011 01011 10011 10110 11011
00100 01100 10111 11100
00110 11110

Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT

25/15

Hashing

12/19/2024

Splitting

msert(11000)
Q00 001 010 011 100 101 110 111
(2) (2) (3) (3) (2)
00001 01001 10001 10101 11001
00011 01011 10011 10110 11011
00100 01100 10111 11100
00110 11110
000 001 010 011 100 101 110 111
(2) (2) (3) (3) (3) (3)
00001 01001 10001 10101 11000 11100
00011 01011 10011 10110 11001 11110
00100 01100 10111 11011
00110

Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT

26/15

References >

LI rrurions

1. M. A. Weiss, “Data Structures and Algorithm Analysis in C”,
Pearson Education, 8™ Edition, 2008.

2. A. V. A
Algorit

no, J. E. Hopcroft and J. D. Ullman, “Data Structures and
hms”, Pearson Education, 2" Edition, 2007

3. Ashok

Kamthane, " Data Structures Using C ", Pearson Education,

2nd Edition, 2012.

4. Sahni Horowitz, “Fundamentals of Data Structures in C”’Universities
Press; Second edition 2008

12/19/2024

Hashing/231TT201 -Data Structures/Vinodhini.B/CSE/SNSCT 27/15

L,

¢ BEY >

e IOICNE;
2 S 2

Thank You

12/19/2024 Hashing/23ITT201 -Data Structures/Vinodhini.B/CSE/SNSCT 28/15

