

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accrediated by NAAC with 'A+' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

Course Name: 23BMT201 & Circuit Analysis

I Year : II Semester

Unit IV –TRANSIENT RESPONSE FOR DC AND AC CIRCUITS

Topic : Step Response of RLC Circuits

Real Life Applications – Electric Fan

Electic Fan Circuit

Real Life Applications – Line Trap

Line Trap is a parallel LC circuit

23BMT201 / CIRCUIT ANALYSIS / Unit 4 / Dr.R.Karthick / HoD-BME

Consider the given series RLC circuit,

- The circuit is being excited by the energy initially stored in the capacitor and inductor.
- The energy is represented by the initial capacitor voltage V_0 and initial inductor current I_0 .
- Thus, at $t = 0$,

$$
v(0) = \frac{1}{C} \int_{-\infty}^{0} i \, dt = V_0
$$

$$
i(0) = I_0
$$

-
-

On applying KVL,
$$
Ri + L \frac{di}{dt} + \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau = 0
$$

on differentiating,

$$
\frac{d^2i}{dt^2} + \frac{R}{L} \frac{di}{dt} + \frac{i}{LC} = 0
$$

This is a second-order differential equation for the current i in the circuit.

The initial values and the first derivative are related as, $Ri(0) + L \frac{di(0)}{dt} + V_0 = 0; \frac{di(0)}{dt} = -\frac{1}{L}(R I_0 + V_0)$

Look for solutions of the form $i = Ae^{st}$ where, A and s are constants.

Substitute this into differential equation, $As^2e^{st} + \frac{AR}{I}se^{st} + \frac{Ase^{st}}{I} = 0$

This quadratic equation is known as the characteristic equation

The roots of the equation dictate the character of *i* and they are given as,

$$
s_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}
$$

$$
s_2 = -\frac{R}{2L} - \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}
$$

A more compact way of expressing the roots is,

$$
s_{1} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}}
$$

$$
s_{2} = -\alpha - \sqrt{\alpha^{2} - \omega_{0}^{2}}
$$

$$
\alpha = \frac{R}{2L}; \ \omega_{0} = \frac{1}{\sqrt{LC}}
$$

- The roots s_1 and s_2 are called **natural frequencies**, measured in nepers per second (Np/s), because they are associated with the natural response of the circuit
- Vision Title 3 • ω_0 is known as the **resonant frequency** or strictly as the **undamped natural frequency**, expressed in radians per second (rad/s);
- α is the **neper frequency (or damping constant)** expressed in nepers per second. The expression given is modified in terms of α and ω_0 ,

$$
s^2 + \frac{R}{L}s + \frac{1}{LC} = 0
$$

$$
s^2 + 2\alpha s + \omega_0^2 = 0
$$

- The roots s_1 and s_2 are called **natural frequencies**, measured in nepers per second (Np/s), because they are associated with the natural response of the circuit
- Vision Title 3 • ω_0 is known as the **resonant frequency** or strictly as the **undamped natural frequency**, expressed in radians per second (rad/s);
- α is the **neper frequency (or damping constant)** expressed in nepers per second. The expression given is modified in terms of α and ω_0 ,

$$
s^2 + \frac{R}{L}s + \frac{1}{LC} = 0
$$

$$
s^2 + 2\alpha s + \omega_0^2 = 0
$$

The two values of s indicate that there are two possible solutions for i, $i_1 = A_1 e^{s_1 t}$; $i_2 = A_2 e^{s_2 t}$

- A complete or total solution would therefore require a linear combination of i_1 and i_2 .
- Thus, the natural response of the series RLC circuit is

 $|i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$

where the constants A_i and A_2 are determined from the initial values $i(0)$ and $di(0)/dt$.

Three types of solutions are inferred:

- 1. If $\alpha > \omega_0$, we have the **over-damped** case.
- 2. If $a = \omega_0$, we have the **critically-damped** case.
- 3. If $\alpha < \omega_0$, we have the **under-damped** case.

-
-

Vision Title 3

Step Response of an RLC Circuit

Overdamped Case $(a > \omega_0)$ $\alpha > \omega_0$ implies R² > 4L/C

$$
\alpha = \frac{R}{2L}; \ \omega_0 = \frac{1}{\sqrt{LC}}
$$

Critically Damped Case $(a = \omega_0)$ $\alpha = \omega_0$ implies $R^2 = 4L/C$ Thus $s_1 =$ For this case,

$$
i(t) = A_1e^{-\alpha t} + A_2e^{-\alpha t} = A_3e^{-\alpha t}
$$

where $A_3 = A_1 + A_2$. But this cannot be the solution, because the two initial conditions cannot be satisfied with the single constant A_3 .

When
$$
\alpha = \omega_0 = R/2L
$$
, then let, $f = \frac{di}{dt} + \alpha i$, then,
\n
$$
\frac{d^2i}{dt^2} + 2\alpha \frac{di}{dt} + \alpha^2 i = 0
$$
\n
$$
\frac{df}{dt} + \alpha f = 0
$$
\nthis is a first-order equation with solution f
\nwhere A₁ is a constant.

23BMT201 / CIRCUIT ANALYSIS / Unit 4 / Dr.R.Karthick / HoD-BME

$$
s_2 = -\alpha = -\frac{R}{2L}
$$

differential $= A_{\iota}e^{-\alpha t},$

 $i(t)$ The original equation for current *i* becomes,

$$
\frac{di}{dt} + \alpha i = A_1 e^{-\alpha t}
$$

$$
e^{\alpha t} \frac{di}{dt} + e^{\alpha t} \alpha i = A_1; \ \frac{d}{dt} (e^{\alpha t} i) = A_1
$$

on integration, $e^{\alpha t}i = A_1 t + A_2$; $i = (A_1 t + A_2)e^{\alpha t}$

Ο

 $\overline{\overline{a}}$

Hence, the natural response of the critically damped circuit is a sum of two terms: a negative exponential and a negative exponential multiplied by a linear term.

Underdamped Case ($\alpha < \omega_0$ **)** $\alpha < \omega_0$ implies R² < 4L/C. The roots may be written as,

$$
s_{1} = -\alpha + \sqrt{-(\omega_{0}^{2} - \alpha^{2})} = -\alpha + \sqrt{s_{2}} = -\alpha - \sqrt{-(\omega_{0}^{2} - \alpha^{2})} = -\alpha - \sqrt{-\omega_{0}^{2} - \alpha^{2}}
$$

where,
$$
j = \sqrt{-1}
$$
; $\omega_d = \sqrt{\omega_0^2 - 1}$

Both ω_0 and ω_d are natural frequencies because they help determine the natural response; while ω_0 is called the *undamped natural frequency*, ω_d is called the *damped natural frequency*. The natural response is

$$
i(t) = A e^{-(\alpha - j\omega_d)t} + A_2 e^{-(\alpha + j\omega_d)t}
$$

= $e^{-\alpha t} (A e^{-j\omega_d t} + A_2 e^{-j\omega_d t})$

23BMT201 / CIRCUIT ANALYSIS / Unit 4 / Dr.R.Karthick / HoD-BME

$\overline{\alpha^2}$

 $_{d}$)t

By using Euler's identities,

 $i(t) = e^{-\alpha t} [A_1(\cos \omega_d t + j \sin \omega_d t) + A_2(\cos \omega_d t - j \sin \omega_d t)]$

 $= e^{-\alpha t} [(A_1 + A_2)\cos{\omega_t} + j(A_1 - A_2)\sin{\omega_d}t]$

$$
i(t) = e^{-\alpha t} [B_1 \cos \omega_d t + B_2 \sin \omega_d t]
$$

Note:

It is clear that the natural response for this case is exponentially damped but also oscillatory in nature. The response has a time constant of $1/\alpha$ and a period of $T = 2\pi/\omega_d$. $i(t)$ \triangle

Under-damped response

