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Real Life Applications - Line Trap | § -

Line Trap is a parallel LC circuit
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Step Response of an RLC Circuit ‘ >

Consider the given series RLC circuit,
T
T
T

ne circuit Is being excited by the energy Initially stored In the capacitor and inductor.
ne energy Is represented by the initial capacitor voltage V, and initial inductor current I,
nus, att =0,
R [
1 Q _ —
v(O)=C_I| dt =V, I )
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. di 1 | R L
On applying KVL, Ri+ L el j i(t)dt =0
dt C_ "
0
on differentiating, + |
P _Rdi . i (1) Vot
B S -
dt*  Ldt LC
This 1s a second-order differential equation for the current 7 in the circuat.

The nitial values and the first derivative are related as.

| di0) ., di0) 1
Ri(O)+ L +V,=0; — —(RI.+V
f( ) g 0 7z L( 0 D)

MT201 / CIRCUIT ANALYSIS / Unit 4 / Dr.R.Karthick / HoD-BME



=] . .
é;%% Step Response of an RLC Circuit

Look for solutions of the form i = 4e* where, 4 and s are constants.

. . . . . AR Ase”
Substitute this into differential equation, 4s ‘e + T.ge” - ;FC =0
L
Ae™| s° +£S+ L) 0
L LC
Thus,
s*+ ‘ES + L =0
L LC

This quadratic equation 1s known as the characteristic equation
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The roots of the equation dictate the character of 7 and they are given as,

L__R, RY 1
' 2L 2L L.C

L __R_ RY 1
* 2L V2L LC

A more compact way of expressing the roots 1s,

s :—(I—I—JI}(‘E—ED‘E
1 0

Szz—a—JaE—mi
a=L o =—1
2L JILC
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Step Response of an RLC Circuit
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 The roots s; and s, are called natural frequencies, measured In nepers per second
(Np/s), because they are associated with the natural response of the circuit

* IS known as the resonant frequency or strictly as the undamped natural frequency,
expressed Iin radians per second (rad/s);

* o IS the neper frequency (or damping constant) expressed In nepers per second.

The expression given is modified in terms of o and oy,

32+Es+i:0

L LC
$°+ 205+, =0
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Step Response of an RLC Circuit
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 The roots s; and s, are called natural frequencies, measured In nepers per second
(Np/s), because they are associated with the natural response of the circuit

* IS known as the resonant frequency or strictly as the undamped natural frequency,
expressed Iin radians per second (rad/s);
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L LC
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Step Response of an RLC Circuit ‘ >

The two values of s indicate that there are two possible solutions for i,
i =Ae" i, =A.e”

« A complete or total solution would therefore requue a lnear

combination of i, and i>.

* Thus, the natural response of the series RLC circuit 1s

i(t)=Ae"+ Ae™

where the constants 4; and 4, are determined from the mitial values

i(0) and di(0)/dt

Three types of solutions are mferred:

1. If @ > w4 we have the over-damped case.

2. If @ = w4, we have the critically-damped case.

3.If @ < wy, we have the under-damped case.
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Step Response of an RLC Circuit B

* Overdamped Case (0> ®y) R 1
> o, implies R2> 4L/C A=—=:- 0 =
o > @ implies 2L 0 JIC

When this happens, both roots s; and s, are negative and real.
—_ 1 L : 2
S oL J o —o

i(t) A :

S =—0L — \/c:n:“"—mﬁ
2 0

The response 1s given as,

i(f)y=AdAeV+ A4 e™ /\
1 2
o

0 t
Overdamped response
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Step Response of an RLC Circuit
* Critically Damped Case (a0 = ®) P
o= oy imphes R2=4L/C Thus s, =5, =—t

For this case.
i(7) :Alg‘m +Aze_m = AEE‘“”

where 4; = 4, + 4, . But this cannot be the solution, because the fvia
initial conditions cannot be satisfied with the single constant 45.

When o = o, =R /2L, then let, f = %+m? then,

d*i di :

_—I—Z'[I +o.2i=0 i—}{]{,f:ﬂ

dr’ dt —) dt

d [ di ( di this 1s a first-order differential
dr(dr o )Jrﬂ‘ L—+m:) 0 equation with solution f = 4;e .

where A, 1s a constant.
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Step Response of an RLC Circuit B

The original equation for current i becomes, /04
i « Critically-damped response
— + Ol f — A ]_E_m \
dt

%

Em£+emﬂf= a e”'i)=A4
dt 4 dr( )=4
on mntegration,

e“i= At + A [i=(df + A )e ™
1 2 1 2

-
el -

0 1 t
a

Hence, the natural response of the critically damped circuit 1s a sum of
two terms: a negative exponential and a negative exponential multiphed

by a linear term.
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Step Response of an RLC Circuit P

* Underdamped Case (0 < @)
o< oy 1mphes R? <4L/C. The roots may be written as,

_ . T _ 2y — :
5 = GL.\/(GJD o) o+ jo

-~ I " -
s =—a. J(mﬂ 0.%) =—0. — jo

where, j=v-1: o, = /0] —a?
Both wq and @, are natural frequencies because they help determine the
natural response; while @, 1s called the undamped natural frequency,

m, 1s called the damped natural frequency. The natural response 1s
f(f) — AF—{C& —joalt AEE{CH.FEM)?

— E—m (AF—_fmda‘ _I_Aze—jmda‘)
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B

y using Euler’s i1dentities,

i(t)=e “[4(cos® t+ jsm® 1)+ A,(cos®— jsmo f)]
—e “[(4,+ A4,)cos® £+ j(A;— A)smo 1]

i(t)=e ™[B,cos® t+ B,smno t]

Note:

It 1s clear that the natural response for this case 1s exponentially damped

but also oscillatory mn nature. The response has a time constant of 1/a and
aperiod of T =2m/w,. 1(t) A

-t

Under-damped response
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