(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chen Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Description of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Description of the COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

Area enclosed by 1. Evaluate I say docdy, where R is the domain R bounded by a axis, ordinate ac = 20 and the cure x= 404. sol an x-axis => y=0 line (20,a) x = 2a0

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chen Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & D.Tech.IT) COIMBATORE-641 035. TAMIL NADU

DEPARTMENT OF MATHEMATICS

14	1.13	1 10	with the trans	The state of	101 1	hat in	and wit
\propto	0	20	966	. (1.1)	bear,	(0.0)	A. (2)
9	0	a	varional	die.	niin	243.	Diviola

Hue, y limits varies from y=0 to y=a (1-torizontal path).

oc limits varies from $\infty = 2 \text{ Tay to } \infty = 2a$ The Regulation was

(Horizontal strip PQ), a 2a .. The required area = II xy doc dy.

$$= \int \left[y \frac{x^2}{2} \right]^{2c} = 2a$$

$$= \int \left[y \frac{x^2}{2} \right]^{2c} = 2ay$$

$$= \int \left[\frac{y^2}{2} - \frac{y^2}{2} \right] dy = \int \left[2a^2y - 2ay^2 \right] dy$$

$$= \left[2a^2 \frac{y^2}{2} - 2a \frac{y^3}{3} \right]_0^a = \left(a^4 - \frac{2a^4}{3} \right) - (0 - 0)$$

$$= \frac{1}{3} a^4 \text{ square units}$$

Approved by AICTE, New Delhi, Affiliated to Anna University, Chen Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

2. Using double integral, find the area bounded by y=x and $y=x^2$ (m: Y= x X 2 2 0 Y=x an. 0 2 4

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chen Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

Therefore, the point of intersection of (1) and (2) is (0,0) and (1,1).

Divide the area into vertical strip of width Sx.

oc varies from x = 0 to x = 1 (vertical path)

Y varies from y=x to y=x (vertical strip PQ)

The required area = j j dydoc

$$= \int_{0}^{1} \left[y\right]_{y=\infty^{2}}^{y=\infty} dx = \int_{0}^{1} (x-x^{2}) dx$$

$$= \left[\frac{x^2}{2} - \frac{x^3}{3}\right]_0^1 = \left(\frac{1}{2} - \frac{1}{3}\right) - (0 - 0)$$

$$= \frac{3-2}{6} = \frac{1}{6}$$
 Square unit

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chen Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

3. Evaluate: II soy docdy over the positive quadrant of the circle so2+ y2=a2.

0

1=0

Solution Gen: $2^2 + y^2 = a^2$

$$x^2 = \alpha^2 - y^2$$

$$x = \pm \sqrt{a^2 + y^2}$$

positive quadrant therefore. we take, $x = \sqrt{a^2 - y^2}$ only.

Divide the area into horizontal

Strips of wordth S y

 ∞ varies from x = 0 to $x = \sqrt{\alpha^2 - y^2}$

I vames from y=0 to y=a

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chen Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Description of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Description of the COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

The required area =
$$\int_0^\infty \int_0^\infty ay da dy$$

$$= \int_0^\infty \left[y \frac{\alpha^2}{2} \right]_{2z=0}^\infty dy.$$

$$= \int_0^\infty \left[\frac{y(a^2 - y^2)}{2} - 0 \right] dy$$

$$= \frac{1}{2} \int_0^\infty (a^2y - y^3) dy = \frac{1}{2} \left[\frac{a^2y^2}{2} - \frac{y^4}{4} \right]_0^\infty$$

$$= \frac{1}{4} \left(a^2 - \frac{1}{2} \right)$$

$$A = \frac{1}{8} \left(2a^2 - 1 \right)$$

$$A = \frac{1}{$$

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chen Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Comp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Comp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

Area of ellipse = $4 \times$ area of quadrant.

Divide the area into hoxingertal stups of width by ∞ varies from $\infty = 0$ to $\infty = \frac{a}{b}\sqrt{b^2-y^2}$ Y varies from y = 0 to y = b

$$= 4 \int \left[\frac{a}{b} \sqrt{b^2 - y^2} - 0 \right] dy$$

$$= 4 \int \left[\frac{b}{b} \sqrt{b^2 - y^2} \right] dy = 4 \int \left[\frac{b^2}{2} \sin^{-1} \frac{y}{b} + \frac{y}{2} \sqrt{b^2 - y^2} \right] dy$$

$$= \frac{4a}{b} \left[\frac{b^2}{2} \frac{\pi}{2} + 0 \right] - (0+0) = \frac{4a}{b} \frac{b^2 \cdot \pi}{2}$$

$$= \pi ab \quad \text{square units}$$