SNS COLLEGE OF TECHNOLOGY [~

vl
Il

Coimbatore-36.
An Autonomous Institution

Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 23CST101 PROBLEM SOLVING AND C PROGRAMMING
| YEAR/V SEMESTER

UNIT — IV POINTERS

Pointers and Arrays

Department of Computer Science and Engineering

UNIT IV

vl
Il

-

o ¢ SR 5
{
o

Pointers - Definition — Initialization —Operations on pointers-Pointer

arithmetic —Pointers and arrays—Illustrative programs.

-

Pointers O !

Relationship Between Arrays and Pointers

An array is a block of sequential data. Let's write a program to print addresses of array

elements.

#include <stdio.h>
int main() {

int x[4]:
int 1; Output
for(i = 0; 1 < 4; ++1) {
printf("&x[%d] = %p\n", 1, &x[1]); &x[0] = 1450734448
t &x[1] = 1450734452
‘ &x[2] = 1450734456
printf("Address of array x: %p", Xx); &x[3] = 1450734460

Address of array x: 1450734448
return 0;

ohJJL5

[Sy

%e m Pointers O !

Notice that, the address of &x[0] and x isthe same. It's because the variable name x

points to the first element of the array.

X x[01 x[1) :x[2] x[3]

From the above example, it is clearthat &x[0] is equivalentto x .And, x[0] isequivalent

to *x .

Similarly,

&x[1] Isequivalentto x+1 and x[1] isequivalentto *(x+1) .

&x[2] Isequivalentto x+2 and x[2] isequivalentto *(x+2) .

Basically, &x[i] isequivalentto x+i and x[i] is equivalentto *(x+i) .

-

Pointers O !

Example 1: Pointers and Arrays

#include <stdio.h>

int main() {
int 1, x[6], sum = 0:
printf("Enter 6 numbers: ");
for(1 = 0; 1 < 6;: ++1) {

When you run the program, the output will be:

Enter 6 numbers: 2

quivalent to scanf("%d", &x[1]);: 3
scanf("%d", x+1); A
A
Equivalent to sum += x[1] 12
sum += *(x+1); 4
t Sum = 29
printf("Sum = %d", sum);
return 0;

Pointers

Example 2: Arrays and Pointers

#include <stdio.h>

int main() {
it {51 = {1, 2, 3,4, 5%F;
int® ptr;

3
// ptr 1s assigned the address of the third element
ptr = &x[2];
printf("*ptr = %d \n", *ptr); L =3

printf("*(ptr+1) = %d \n", *(ptr+1));
printf("*(ptr-1) = %d", *(ptr-1)); ‘

return 0O;

~»

-

TIryrionls

[N,

,% Pointers 51 S

ﬂHuZ

s
%

When you run the program, the output will be:

*otr = 3
*(ptr+1) = 4
*(ptr-1) = 2

In this example, &x[2] , the address of the third element, is assigned to the ptr pointer.

Hence, 3 was displayed when we printed *

And, printing *(ptr+1) gives us the fourth element. Similarly, printing *(ptr-1) gives us the

second element.

L,

Tryrionls

3 13 Pointers =

C Pointers

Pointers are powerful features of C and C++ programming. Before we learn pointers, let's

learn about addresses in C programming.

Address in C

If you have a variable var inyour program, &var will give you its address in the memory.

We have used address numerous times while using the scanf() function.

scanf("%d", &var);

i Pointers D! S

TrIrionls
-

Here, the value entered by the user is stored in the address of var variable. Let's take a
working example.

#include <stdio.h>
int main()

{
int var = 5;:
printf("var: %d\n", var);
// Notice the use of & before var
printf("address of var: %p", &var);
return 0:
} Output
var: 5

address of var: 2686778

L RRS

Q&0

Pointers S S

TrIrionls

C Pointers

Pointers (pointer variables) are special variables that are used to store addresses rather than

values.

Pointer Syntax

Here is how we can declare pointers.
int* p;
Here, we have declared a pointer p of int type.

You can also declare pointers in these ways.

int *pi;
int * p2;

Pointers S S

Tryrionls

Let's take another example of declaring pointers.

int* p1, p2;

Here, we have declared a pointer p1 and a normal variable p2 .

& Pointers

Assigning addresses to Pointers

Let's take an example.

int* pc, ¢
c=95
pc = &c;

Here, 5 is assigned to the ¢ variable. And, the address of ¢ is assigned tothe pc pointer.

L,

o Pointers O ! S
Get Value of Thing Pointed by Pointers
To get the value of the thing pointed by the pointers, we use the * operator. For example:

int* pc, c;

c = 5;

pc = &c;
printf("%d", *pc); // Qutput: 5

Here, the address of ¢ is assigned tothe pc pointer. To get the value stored in that

address, we used *pc .

% Pointers

Note: In the above example, pc Is a pointer, not *pc . You cannot and should not do

something like *pc = &c |

By the way, * is called the dereference operator (when working with pointers). It

operates on a pointer and gives the value stored in that pointer.

-

Pointers O/ S

Q&0

L RR

3
0
<

Changing Value Pointed by Pointers

Let's take an example.

int* pe. c;

c =5

pc = &c;

c =1;

printf("%d", c); // Output: 1

printf("%d", *pc); // Ouptut: 1

We have assigned the address of ¢ tothe pc pointer.

Then, we changed the value of ¢ tol.Since pc andthe address of c¢ isthe same, *pc

gives us 1.

-

5 Pointers 3

= < .j) Tryrionls

Let's take another example.

iat> pc, ¢

c =5

pc = &c;

*pc = 1;

printf("%d", *pc); // Ouptut: 1
printf("%d", c); // Output: 1

We have assigned the address of ¢ tothe pc pointer.

Then, we changed *pc tolusing *pc = 1; .Since pc andthe address of ¢ isthe same,

¢ will be equal to .

-

Example: Working of Pointers ~ I

Let's take a working example.

#include <stdio.h>
int main()

P Output

int* pe, <3

Cos Zié - : b s Address of c: 2686784

printf(" ress of c: %p\n", &c); .

printf("Value of c: %d\n\n", c); [S 22 Value of c: 22

pc = &c; Address of pointer pc: 2686784
printf("Address of pointer pc: %p\n", pc); Content of pDiﬂtEF pc: 292
printf(“"Content of pointer pc: %d\n\n", *pc); // 22

el =11 Address of pointer pc: 2686784
printf("Address of pointer pc: %p\n", pc); Content of pointer pc: 11

printf("Content of pointer pc: %d\n\n", *pc); // 11
Address of c: 2686784

% = 2:
P Value of c: 2

printf("Address of c: %p\n", &c);
printf("Value of c: %d\n\n", c);
return 0;

TIryrionls

