
COURSE NAME : 23CST101 PROBLEM SOLVING AND C PROGRAMMING

I YEAR/ V SEMESTER

UNIT – V STRUCTURES UNIONS AND FILES

PREPROCESSOR DIRECTIVES

Department of Computer Science and Engineering

SNS COLLEGE OF TECHNOLOGY
Coimbatore-36.

An Autonomous Institution

Accredited by NBA –AICTE and Accredited by NAAC – UGC with ‘A+’Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

UNIT V

Defining Structures and Unions– Structure declaration – Need forStructure

data type-Structure within a structure -Union -Programs using structures

and Unions- Pre-processor directives –Files: Opening and Closing

a Data File – Reading and writing a data file – Processing a data file -

Illustrative programs

PREPROCESSOR

DIRECTIVES

Preprocessors are programs that process

the source code before compilation.

This process is called preprocessing.

Commands used in preprocessor are

called preprocessor directives and they

begin with “#” symbol.

PREPROCESSOR

DIRECTIVES

Types of C Preprocessors

There are 4 Main Types of Preprocessor

Directives:

1. Macros

2. File Inclusion

3. Conditional Compilation

4. Other directives

#undef Directive

#pragma Directive

PREPROCESSOR

DIRECTIVES

1.Macros

Macros are pieces of code in a

program that is given some

name. Whenever this name is

encountered by the compiler, the

compiler replaces the name with

the actual piece of code.

The ‘#define’ directive is used

to define a macro.

Syntax of Macro Definition

#define token value

#define token value

In this program, when the compiler

executes the word LIMIT, it

replaces it with 5. The word

‘LIMIT’ in the macro definition is

called a macro template and ‘5’ is

macro expansion.

Note:

There is no semi-colon (;) at the end

of the macro definition.

PREPROCESSOR

DIRECTIVES

1.Macros With Arguments
Macros With Arguments

Pass arguments to macros. Macros defined

with arguments work similarly to functions.

2.File inclusion

This type of preprocessor directive tells the compiler to

include a file in the source code program. The #include

preprocessor directive is used to include the header

files in the C program.

There are two types of files that can be included by

the user in the program:

1.Standard Header Files

#include<file_name>

where file_name is the name of the header file to be

included. The ‘<‘ and ‘>’ brackets tell the compiler to

look for the file in the standard directory.

2. User-defined Header Files

When a program becomes very large, it is a

good practice to divide it into smaller files and

include them whenever needed. These types of

files are user-defined header files.

The double quotes (” ”) tell the compiler to

search for the header file in the source file’s

directory.

3.Conditional Compilation

Conditional Compilation in C directives is a type of directive that helps to compile a specific portion

of the program or to skip the compilation of some specific part of the program based on some

conditions.

There are the following preprocessor directives that are used to insert conditional code:

1. #if Directive

2. #ifdef Directive

3. #ifndef Directive

4. #else Directive

5. #elif Directive

6. #endif Directive

#endif directive is used to close off the #if, #ifdef, and #ifndef opening directives which means the

preprocessing of these directives is completed.

https://www.geeksforgeeks.org/cpp-preprocessor-directives-set-2/

If the macro with the name ‘macro_name‘ is defined, then the block of

statements will execute normally, but if it is not defined, the compiler

will simply skip this block of statements.

2/7/2024

3.Conditional Compilation

4.Other Directives

#undef Directive

1. #undef Directive

The #undef directive is used to undefine an existing

macro. This directive works as:

Using this statement will undefine the existing macro

LIMIT. After this statement, every “#ifdef LIMIT”

statement will evaluate as false.

4.Other Directives

#pragma Directive

This directive is a special purpose directive and is

used to turn on or off some features. These types of

directives are compiler-specific, i.e., they vary from

compiler to compiler.

#pragma startup: These directives help us to specify the

functions that are needed to run before program startup (before

the control passes to main()).

#pragma exit: These directives help us to specify the functions

that are needed to run just before the program exit (just before

the control returns from main()).

