

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT-V DATA ANALYSIS

Correlation

Unit-5
DATA ANALYSIS
Covelation Analysis:
Correlation is a statistical method
to study the strength of vielations up
between two variables con data sets.
Karl Reavison coefficient of correlation:
It is classified into two types.
1. Avithmetic Hear Kethod
2. Assumed Mean Hethod
Avithmetic Mean Method:
Formula:
Exy Exy
$\sqrt{\sum x^2 \times \sum y^2}$
where,
x = x - x
$y = y - \overline{y}$
Assumed Hean Hethod!
M = NEdady - (Eda) (Edy)
VN Edx2-(Edx)2 NEdy2-(Edy)2

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

where,

doc (or) dy = seviation from assumed mean

dx = X-A , dy = y-A

Note:

when \overline{x} and \overline{y} are whole number, it is withmetic mean method.

$$\overline{x} = \underbrace{\Sigma x}_{N}, \overline{y} = \underbrace{\Sigma y}_{N}$$

Example:

calculate the karl pearson's coefficient, of correlation from the following data vielating to the age of employees and the number of days they were reported sick in the month.

Age C×)	30	32	35	40	48	50	52	55	57	61
Sick days (Y))	0	2	5	2	4	Ь	5	7	8

$$\bar{x} = \sum_{N} = \frac{460}{10} = 46$$

$$\bar{x} = \frac{\bar{x}y}{N} = \frac{40}{10} = 4$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

20	9	x2	y2	xy		
30	١	900	1	30		
32	0	1024	0	0		
35	2	1225	4	70		
40	5	1600	25	200		
48	2	2304	4	96		
50	4	2500	16	200		
52	Ь	2704	36	312		
55	5	3025	25	275		
57	7	3249	49	399		
61	8	3721	64	Tt 88		
$\Sigma x =$	Ey =	Ex2 =	Σy2=	Exy =		
460	40	22,252	224	2070		

$$M = \sum \alpha y$$

$$\sqrt{\xi x^2 \times \xi y^2}$$

$$= 2070$$

$$\sqrt{\lambda \lambda_1 \lambda_2 \lambda_3 \times \lambda_3 \lambda_4}$$

$$= 2070$$

$$\sqrt{4984448}$$

$$= 2070$$

$$\lambda \lambda_3 \lambda_1 \cdot 58$$

$$M = 0.927$$