

SNS COLLEGE OF TECHNOLOGY

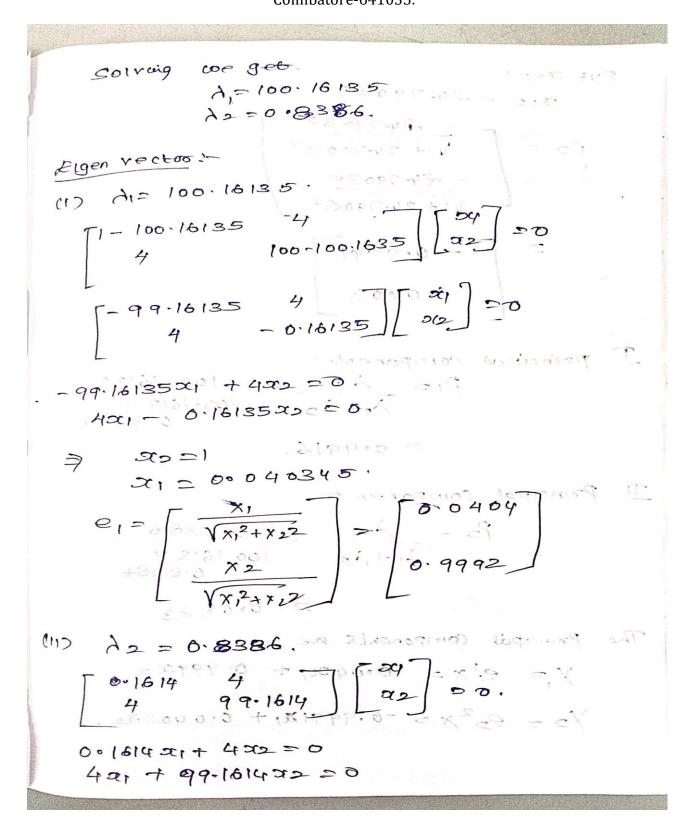
(An Autonomous Institution) Coimbatore-641035.

UNIT-V DATA ANALYSIS

Principal Component Analysis

Defnir The basic idea of PCA is to descrobe the Variation of a set of multivariate data on terms of a set of uncorrelated variables each of cohich is a particular linear combination of the original Variables.

1. compute the principal component to the followup Covariana Matrix


Konsider

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

Put
$$x_{0}=1$$
 $x_{1}=-24.79035$
 $x_{2}=-24.79035$
 $x_{2}=-24.79035$
 $x_{1}=-24.79035$
 $x_{2}=-24.79035$
 $x_{2}=-24.79035$
 $x_{2}=-24.79035$
 $x_{3}=-24.79035$
 $x_{2}=-24.79035$
 $x_{3}=-24.79035$
 $x_{1}=-24.79035$
 $x_{2}=-24.79035$
 $x_{1}=-24.79035$
 $x_{2}=-24.79035$
 $x_{1}=-24.79035$
 $x_{2}=-24.79035$
 $x_{1}=-24.79035$
 $x_{2}=-24.79035$
 $x_{2}=-24.79035$
 $x_{1}=-24.79035$
 $x_{2}=-24.79035$
 $x_{1}=-24.79035$
 $x_{2}=-24.79035$
 $x_{1}=-24.79035$
 $x_{2}=-24.79035$
 $x_{1}=-24.79035$
 $x_{2}=-24.79035$
 $x_{1}=-24.79035$
 $x_{2}=-24.79035$
 $x_{2}=-24.79035$