

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

.

UNIT-V DATA ANALYSIS

1. Find the Karl Pearson's coefficient of correlation of the following data:

Age of husband	20	22	23	25	25	28	29
in years							
Age of wife in	18	20	22	24	21	26	26
years							

Age of husband	30	30	34
in years			
Age of wife in	25	27	29
years			

2. Find the Karl Pearson's coefficient of correlation of the following data:

Age (x)	30	32	35	40	48	50	52
Sick days (Y)	1	0	2	5	2	4	6

Age (x)	55	57	61
Sick days (Y)	5	7	8

3.

Aptitude	60	62	65	70	72	48	53
scores (X)							
Productivity	68	60	62	80	85	40	52
index (Y)							

Aptitude scores (X)	73	65	82
Productivity index (Y)	62	60	81

Find the two regression equations.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Coimbatore-641035.

4. Calculate the regression equations of X on Y and Y on X from the following data.

Х	1	12	13	17	18	20	24	30
	0							
Y	5	6	7	9	13	15	20	21

5. Let X =
$$\begin{bmatrix} -1 & 9 & 3 \\ -5 & 7 & 2 \\ -1 & -3 & -4 \end{bmatrix}$$
 then compute the

- (i) Sample mean vector \overline{X} .
- (ii) Sample Covariance matrix.

6. Let
$$X = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 5 & -4 \\ 0 & 6 & 8 \end{bmatrix}$$
 then compute the

- (iii) Sample mean vector \overline{X} .
- (iv) Sample Covariance matrix.

7. Using Principal Component Analysis for the given data, reduce the dimension from two to one.

Х	4	8	13	7
Y	11	4	5	14

8. Using Principal Component Analysis for the given data, reduce the dimension from two to one.

Х	2	1	0	-1
Y	4	3	1	0.5