
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

PROGRAMMING FOR PROBLEM SOLVING
I YEAR - I SEM

UNIT 4 – FUNCTIONS AND POINTERS

TOPIC 2 – Function Calls

28 December 2024 Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

222/21

FUNCTION CALLS

➢ A function can be called by simply using the function name followed by a list of actual

parameters (or arguments), if any, enclosed in parentheses.

➢ Example:

main()

{

int y;

y = mul(10,5); /* Function call */

printf(“%d\n”, y);

}

➢ When the compiler encounters a function call, the control is transferred to the function mul().

➢ This function is then executed line by line as described and a value is returned when a return

statement is encountered.

➢ This value is assigned to y.

➢ This is illustrated below and shown as figure.

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

333/21

FUNCTION CALLS

28 December 2024 Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

444/21

FUNCTION CALLS

➢ The function call sends two integer values 10 and 5 to the function.

➢int mul(int x, int y)

➢ which are assigned to x and y respectively.

➢ The function computes the product x and y, assigns the result to the local variable p, and then

returns the value 25 to the main where it is assigned to y again.

➢ There are many different ways to call a function.

➢ Listed below are some of the ways the function mul can be invoked.

mul (10, 5)

mul (m, 5)

mul (10, n)

mul (m, n)

mul (m + 5, 10)

mul (10, mul(m,n))

mul (expression1, expression2)

➢ Note that the sixth call uses its own call as its one of the parameters.

➢ When we use expressions, they should be evaluated to single values that can be passed as

actual parameters.

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

555/21

FUNCTION CALLS

➢ A function which returns a value can be used in expressions like any other variable.

➢ Each of the following statements is valid:

printf(“%d\n”, mul(p,q));

y = mul(p,q) / (p+q);

if (mul(m,n)>total) printf(“large”);

➢ However, a function cannot be used on the right side of an assignment statement.

➢ For instance, mul(a,b) = 15; is invalid.

➢ A function that does not return any value may not be used in expressions; but can be called in

to perform certain tasks specified in the function.

➢ The function printline() discussed belongs to this category.

➢ Such functions may be called in by simply stating their names as independent statements.

➢ Example:

main()

{

printline();

}

➢ Note the presence of a semicolon at the end.
28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

666/21

FUNCTION DECLARATION

➢ Like variables, all functions in a C program must be declared, before they are

invoked.

➢A function declaration (also known as function prototype) consists of four parts.

➢Function type (return type).

➢Function name.

➢Parameter list.

➢Terminating semicolon.

➢ They are coded in the following format:

➢Function-type function-name (parameter list);

➢ This is very similar to the function header line except the terminating semicolon.

➢ For example, mul function defined in the previous section will be declared as:

➢int mul (int m, int n); /* Function prototype */

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

777/21

FUNCTION DECLARATION

➢ Points to Note

➢ 1. The parameter list must be separated by commas.

➢ 2. The parameter names do not need to be the same in the prototype declaration and

the function definition.

➢ 3. The types must match the types of parameters in the function definition, in

number and order.

➢ 4. Use of parameter names in the declaration is optional.

➢ 5. If the function has no formal parameters, the list is written as (void).

➢ 6. The return type is optional, when the function returns int type data.

➢ 7. The retype must be void if no value is returned.

➢ 8. When the declared types do not match with the types in the function definition,

compiler will produce an error.

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

888/21

FUNCTION DECLARATION

➢ A prototype declaration may be placed in two places in a program.

➢ 1. Above all the functions (including main).

➢ 2. Inside a function definition.

➢ When we place the declaration above all the functions (in the global declaration section), the

prototype is referred to as a global prototype.

➢ Such declarations are available for all the functions in the program.

➢ When we place it in a function definition (in the local declaration section), the prototype is

called a local prototype.

➢ Such declarations are primarily used by the functions containing them.

➢ The place of declaration of a function defines a region in a program in which the function may

be used by other functions.

➢ This region is known as the scope of the function.

➢ It is a good programming style to declare prototypes in the global declaration section before

main.

➢ It adds flexibility, provides an excellent quick reference to the functions used in the program,

and enhances documentation.
28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

999/21

FUNCTION DECLARATION

➢ Prototypes: Yes or No

➢ Prototype declarations are not essential.

➢ If a function has not been declared before it is used, C will assume that its details

available at the time of linking.

➢ Since the prototype is not available, C will assume that the return type is an integer

and that the types of parameters match the formal definitions.

➢ If these assumptions are wrong, the linker will fail and we will have to change the

program.

➢ The moral is that we must always include prototype declarations, preferably in

global declaration section.

28 December 2024 Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

101010/21

FUNCTION DECLARATION

➢ Parameters Everywhere!

➢ Parameters (also known as arguments) are used in following three places:

➢1. in declaration (prototypes),

➢2. in function call, and

➢3. in function definition.

➢ The parameters used in prototypes and function definitions are called formal

parameters and those used in function calls are called actual parameters.

➢Actual parameters used in a calling statement may be simple constants, variables,

or expressions.

➢ The formal and actual parameters must match exactly in type, order and number.

➢ Their names however, do not need to match.

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

111111/21

CATEGORY OF FUNCTIONS

➢A function, depending on whether arguments are present or not and whether a value

is returned or not, may belong to one of the following categories:

➢ Category 1: Functions with no arguments and no return values.

➢ Category 2: Functions with arguments and no return values.

➢ Category 3: Functions with arguments and one return value.

➢ Category 4: Functions with no arguments but return a value.

➢ Category 5: Functions that return multiple values.

28 December 2024 Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

121212/21

No Arguments and No Return Values

➢When a function has no arguments, it does not receive any data from the calling

function.

➢ Similarly, when it does not return a value, the calling function does not receive any

data from the called function.

➢ In effect, there is no data transfer between the calling function and the called

function.

➢ This is depicted in Fig.

➢ The dotted lines indicate that there is only a transfer of control but not data.

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

131313/21

Arguments But No Return Values

➢ The actual and formal arguments should match in number, type, and order.

➢ The values of actual arguments are assigned to the formal arguments on a one to

one basis, starting with the first argument as shown in Fig

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

141414/21

Arguments with Return Values

28 December 2024 Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

151515/21

No Arguments But Returns a Value

➢ There could be occasions where we may need to design functions that may not take any

arguments but returns a value to the calling function.

➢ A typical example is the getchar function declared in the header file <stdio.h>.

➢ We have used this function earlier in a number of places.

➢ The getchar function has no parameters but it returns an integer type data that represents a

character.

➢ We can design similar functions and use in our programs.

➢ Example

int get_number(void);

main

{

int m = get_number();

printf(“%d”,m);

}

int get_number(void)

{

int number;

scanf(“%d”, &number);

return(number);

}
28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

161616/21

NESTING OF FUNCTIONS

➢ C permits nesting of

functions freely.

➢ main can call function1,

which calls function2,

which calls function3,

………. and so on.

➢ There is in principle no

limit as to how deeply

functions can be nested.

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

171717/21

RECURSION

➢ When a called function in turn calls another function a process of ‘chaining’ occurs.

➢ Recursion is a special case of this process, where a function calls itself.

➢ A very simple example of recursion is presented below:

main()

{

printf(“This is an example of recursion\n”)

main();

}

➢ When executed, this program will produce an output something like this:

This is an example of recursion

This is an example of recursion

This is an example of recursion

This is an ex

➢ Execution is terminated abruptly; otherwise the execution will continue indefinitely.

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

181818/21

RECURSION

➢ Another useful example of recursion is the evaluation of factorials of a given number.

➢ The factorial of a number n is expressed as a series of repetitive multiplications as shown

below:

factorial of n = n(n–1)(n–2).........1.

➢ For example,

factorial of 4 = 4 3 2 1 = 24

➢ A function to evaluate factorial of n is as follows:

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

191919/21

RECURSION

➢ Let us see how the recursion works.

➢ Assume n = 3.

➢ Since the value of n is not 1, the statement

➢fact = n * factorial(n–1);

➢ will be executed with n = 3.

➢ That is, fact = 3 * factorial(2); will be evaluated.

➢ The expression on the right-hand side includes a call to factorial with n = 2.

➢ This call will return the following value:

➢2 * factorial(1)

➢ Once again, factorial is called with n = 1.

➢ This time, the function returns 1.

➢ The sequence of operations can be summarized as follows:

➢ fact = 3 * factorial(2)

➢ = 3 * 2 * factorial(1)

➢ = 3 * 2 * 1

➢ = 6
28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

202020/21

PASS BY VALUE VERSUS PASS BY POINTERS

➢ The technique used to pass data from one function to another is known as parameter passing.

➢ Parameter passing can be done in following two ways:

➢Pass by value (also known as call by value).

➢Pass by pointers (also known as call by pointers).

➢ In pass by value, values of actual parameters are copied to the variables in the parameter list

of the called function.

➢ The called function works on the copy and not on the original values of the actual

parameters.

➢ This ensures that the original data in the calling function cannot be changed accidentally.

➢ In pass by pointers (also known as pass by address), the memory addresses of the variables

rather than the copies of values are sent to the called function.

➢ In this case, the called function directly works on the data in the calling function and the

changed values are available in the calling function for its use.

➢ Pass by pointers method is often used when manipulating arrays and strings.

➢ This method is also used when we require multiple values to be returned by the called function.

28 December 2024 Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

212121/21

THE SCOPE, VISIBILITY, AND LIFETIME OF VARIABLES

➢Variables in C differ in behaviour from those in most other languages.

➢ For example, in a BASIC program, a variable retains its value throughout the

program.

➢ It is not always the case in C.

➢ It all depends on the ‘storage’ class a variable may assume.

➢ In C not only do all variables have a data type, they also have a storage class.

➢ The following variable storage classes are most relevant to functions:

➢1. Automatic variables.

➢2. External variables.

➢3. Static variables.

➢4. Register variables.

➢We shall briefly discuss the scope, visibility, and longevity of each of the above class

of variables.

28 December 2024
Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

222222/21

THE SCOPE, VISIBILITY, AND LIFETIME OF VARIABLES

➢ Scope

➢ The scope of variable determines over what region of the program a variable is

actually available for use(‘active’).

➢ Longevity

➢ Longevity refers to the period during which a variable retains a given value during

execution of a program (‘alive’).

➢ So longevity has a direct effect on the utility of a given variable.

➢Visibility

➢ The visibility refers to the accessibility of a variable from the memory.

➢ The variables may also be broadly categorized, depending on the place of their

declaration, as internal (local) or external (global).

➢ Internal variables are those which are declared within a particular function,

➢while external variables are declared outside of any function.

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

