SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

PROGRAMMING FOR PROBLEM SOLVING
[YEAR - | SEM

UNIT 4 - FUNCTIONS AND POINTERS

TOPIC 2 - Function Calls

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

s

>

ﬁ‘

LLTTITITIONS

FUNCTION CALLS

parameters (or arguments), If any, enclosed in parentheses.
» Example:
main()
{ -
Inty;
y = mul(10,5); /* Function call */
printf(“%d\n”, y);
h
» When the compiler encounters a function call, the control is transferred to the function mul().
» This function is then executed line by line as described and a value Is returned when a return
statement Is encountered.
» This value Is assigned to y.
» This is illustrated below and shown as figure.

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 2/21

FUNCTION CALLS

FIrorions

main ()

— y = mul(10,5); /* call*/
Illl".

int mul(int x,int y)=
int p; /*1ocal variable*/

p=X%Y; /* x= 10, y = 5%/
return (p);

L

28 December 2024 Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 3/21

FUNCTION CALLS

»Int mul(int X, Inty)
» which are assigned to x and y respectively.
» The function computes the product x and y, assigns the result to the local variable p, and then
returns the value 25 to the main where It Is assigned to y again.
» There are many different ways to call a function.
» Listed below are some of the ways the function mul can be invoked.
mul (10, 5)
mul (m, 5)
mul (10, n)
mul (m, n)
mul (m + 5, 10)
mul (10, mul(m,n))
mul (expressionl, expression2)
» Note that the sixth call uses its own call as its one of the parameters.
» When we use expressions, they should be evaluated to single values that can be passed as

actual paramete IS, Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 4./21

28 December 2024

FUNCTION CALLS

» Each of the following statements is valid:
printf(“%d\n”’, mul(p,q));
y =mul(p,q) / (p+0);
if (mul(m,n)>total) printf(“large™);
» However, a function cannot be used on the right side of an assignment statement.
» For instance, mul(a,b) = 15; i1s invalid.
» A function that does not return any value may not be used in expressions; but can be called In
to perform certain tasks specified in the function.
» The function printline() discussed belongs to this category.
» Such functions may be called in by simply stating their names as independent statements.
» Example:
main()

{
printline();

}

» Note the presence of a S@lm(!tcl:(())nlsc/)grg‘é U(;'re P?oqg'olving / Dr.M.Mohankumar /AIML/SNSCT 5/21

28 December 2024

FUNCTION DECLARATION

LLTTITITION S

Like variables, all functions in a C program must be declared, before they are

Invoked.
» A function declaration (also known as function prototype) consists of four parts.

>
>
>

—unction type (return type).
—unction name.

Parameter list.

» Terminating semicolon.
» They are coded In the following format:
» Function-type function-name (parameter list);

> ThiS IS

very similar to the function header line except the terminating semicolon.

» For example, mul function defined in the previous section will be declared as:
»Int mul (int m, int n); /* Function prototype */

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 6/21

FUNCTION DECLARATION

LLTTTTITION S

Points to Note

» 1. The parameter list must be separated by commas.

» 2. The parameter names do not need to be the same In the prototype declaration and
the function definition.

» 3. The types must match the types of parameters in the function definition, in
number and order.

» 4. Use of parameter names In the declaration iIs optional.

» 5. If the function has no formal parameters, the list Is written as (void).

» 6. The return type Is optional, when the function returns int type data.

» 1. The retype must be void If no value Is returned.

» 8. When the declared types do not match with the types in the function definition,
compiler will produce an error.

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 7/21

FUNCTION DECLARATION

» 1. Above all the functions (including main).

» 2. Inside a function definition.

» When we place the declaration above all the functions (in the global declaration section), the
prototype Is referred to as a global prototype.

» Such declarations are available for all the functions in the program.

» When we place It in a function definition (in the local declaration section), the prototype Is
called a local prototype.

» Such declarations are primarily used by the functions containing them.

» The place of declaration of a function defines a region in a program in which the function may
be used by other functions.

» This region is known as the scope of the function.

» |t 1s a good programming style to declare prototypes in the global declaration section before
main.

» |t adds flexibility, provides an excellent quick reference to the functions used in the program,
and enhances documentation.

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 8/21

FUNCTION DECLARATION

Prototypes: Yes or No

» Prototype declarations are not essential.

» |f a function has not been declared before it 1s used, C will assume that its details
avallable at the time of linking.

» Since the prototype Is not available, C will assume that the return type Is an integer
and that the types of parameters match the formal definitions.

» |f these assumptions are wrong, the linker will fail and we will have to change the
program.

» The moral Is that we must always include prototype declarations, preferably in
global declaration section.

LLTTTTITION S

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 9/21

Paramete

FUNCTION DECLARATION
rs Everywhere!

LLTTITITION S

» Parameters (also known as arguments) are used in following three places:

>1.
>2.
»3. |

n declaration (prototypes),
n function call, and
n function definition.

» The param

eters used In prototypes and function definitions are called formal

parameters and those used In function calls are called actual parameters.

» Actual par

Or expressions

ameters used In a calling statement may be simple constants, variables,

» The formal and actual parameters must match exactly In type, order and number.
» Thelr names however, do not need to match.

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 10/21

CATEGORY OF FUNCTIONS >

WISTIT I TION S

/
A function, depending on whether arguments are present or not and whether a value

IS returned or not, may belong to one of the following categories:

» Category 1. F
» Category 2. F
» Category 3: F
» Category 4: F
» Category 5. F

ctio
ctio
ctio
ctio
ctio

NS Wit
NS Wit
NS Wit
NS Wit

N No arguments and no return values.
N arguments and no return values.
n arguments and one return value.

N No arguments but return a value.

ns that return multiple values.

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 11./21

No Arguments and No Return Values >

ST TIONIS

< >

© ®
o a
()

- £ &
) e =
° %:- =iy, 2
Q o =48 o
z VALY o

)

ST

Cgg.3®

<

"
When a function has no arguments, it does not receive any data from the calling
function.

» Similarly, when It does not return a value, the calling function does not receive any
data from the called function.

» In effect, there Is no data transfer between the calling function and the called
function.

» This Is depicted In Fig.
» The dotted lines indicate that there is only a transfer of control but not data.

control

function1{) 4 "] function 2 ()
[Mo input ,:

1 | _|

function 2 ()

| No output

control

Fig. 11.3 No data communication between functions
28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 12/21

Arguments But No Return Values

The actual and formal arguments should match in number, type, and order.
» The values of actual arguments are assigned to the formal arguments on a one to
one basis, starting with the first argument as shown In Fig

LLTTITITION S

main ()
{ actual arguments
M
_ _ Function | -——------ ‘
function1 () Values function 2 (f) call . function1 (al, a2, a3, .. am)
{ of arguments | } ________
R [AR g L | y
function 2 (a) functionl (f1, f2, f3, - fn)
A
""""""""" Called formal arguments
} _No return value | } ----------------- function——= {

One-way data communication

Arguments matching between the function call and the called function

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 13/21

function1()

Values
of arguments

Arguments with Return Values

Function result

—

-

function 2 (f)

return (e)

|

Two-way data communication between functions

28 December 2024 Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

- o
~»

(T T1O0IS

14/21

No Arguments But Returns a Value

arguments but returns a value to the calling function.
» Atypical example is the getchar function declared in the header file <stdio.h>.
» We have used this function earlier in a number of places.
» The getchar function has no parameters but it returns an integer type data that represents a

character. | |
» We can design similar functions and use in our programs. Nt get_number(void);
> Example main ¢

Int m = get_number();
printf(“%d”,m);
}

Int get_number(void)
{
Int number;
scanf(“%d”, &number);
return(number);,

}

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 15/21

28 December 2024

NESTING OF FUNCTIONS

float ratio (int x, int y, int 2z);
int difference (int x, int y);

functions freely.

main{)
» main can call functionl, {
.] int a, b, c¢;
WhICh CaIIS funCtlonZ, S-I:-Eﬂ'fr_uiil:l :!il:l Eil:l., E.E., Eh, -E.C};
which calls function3, printf("%f \n", ratio(a,b,c));
.......... and so on. |
> There iS N principle no float ratio(int x, int y, int z)
.. {
limit as to how deeply if(difference(y, z))
functions can be nested. return(x/(y-2));

else
return{0.0);

]
int difference(int p, int q)
{
if(p t= q)
return (1);
else
return{0);

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 16/21

RECURSION

%%’ When a called function in turn calls another function a process of ‘chaining’ occurs.
» Recursion Is a special case of this process, where a function calls itself.
» Avery simple example of recursion Is presented below:
main()
{
printf(“This 1s an example of recursion\n™)
main();
h
» When executed, this program will produce an output something like this:
This Is an example of recursion
nis Is an example of recursion
NIS IS an example of recursion
NIS IS an ex
» Execution is terminated abruptly; otherwise the execution will continue indefinitely.

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 17,/21

RECURSION

» The factorial of a number n Is expressed as a series of repetitive multiplications as shown
below:
factorial of n = n(n-1)(n-2)......... 1.
» For example,
factorialof 4=4321=24
» A function to evaluate factorial of n is as follows:

factorial(int n)
{
int fact;
if (n==1)
return(1);
else
fact = n*factorial(n-1);
return(fact);

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 18/21

RECURSION

=5 Let us see how the recursion works.

» Assume n = 3.

» Since the value of n is not 1, the statement
»fact = n * factorial(n-1);

» Will be executed with n = 3.

» That is, fact = 3 * factorial(2); will be evaluated.

» The expression on the right-hand side includes a call to factorial with n = 2.

» This call will return the following value:

LLTTITITION S

factorial (int n)

»2 * factorial(1) {
» Once agaln, factorial is called with n = 1. int fact:
» This time, the function returns 1. if (n==1)
» The sequence of operations can be summarized as follows: return(1);
» fact = 3 * factorial(2) else
>» =3 *2%* factoria|(1) fact = n*factorial(n-1);
> =3%92 %1 return(fact);
> =6 !

28 December 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 19/21

LTSI IO S
SIng.

» Parameter passing can be done in following two ways:

»Pass by value (also known as call by value).

»Pass by pointers (also known as call by pointers).

» |n pass by value, values of actual parameters are copied to the variables in the parameter list
of the called function.

» The called function works on the copy and not on the original values of the actual
parameters.

» This ensures that the original data in the calling function cannot be changed accidentally.

» In pass by pointers (also known as pass by address), the memory addresses of the variables
rather than the copies of values are sent to the called function.

» |In this case, the called function directly works on the data in the calling function and the
changed values are available in the calling function for its use.

» Pass by pointers method is often used when manipulating arrays and strings.

» This method Is also used when we require multiple values to be returned by the called function.

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 20/21

LLTTITITION S

» Variables in C differ in behaviour from those in most other languages.
» For example, in a BASIC program, a variable retains its value throughout the
program.
» It Is not always the case In C.
» It all depends on the ‘storage’ class a variable may assume.
» In C not only do all variables have a data type, they also have a storage class.
» The following variable storage classes are most relevant to functions:
» 1. Automatic variables.
» 2. External variables.
» 3. Static variables.
»4. Register variables.
» We shall briefly discuss the scope, visibility, and longevity of each of the above class
of variables.

28 Decem ber 2024

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 21/21

LLTTTTITION S

» The scope of variable determines over what region of the program a variable Is
actually available for use(‘active’).

» Longevity

» Longevity refers to the period during which a variable retains a given value during
execution of a program (‘alive’).

» S0 longevity has a direct effect on the utility of a given variable.

> Visibility

» The visibility refers to the accessibility of a variable from the memory.

» The variables may also be broadly categorized, depending on the place of their
declaration, as internal (local) or external (global).

» Internal variables are those which are declared within a particular function,

» While external variables are declared outside of any function.

Functions/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT 22/21

