

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

FILE MANAGEMAENT IN C

File Handling in C:

Functions for file handling

There are many functions in the C library to open, read, write, search and close the

file. A list of file functions are given below:

In programming, we may require some specific input data to be generated

several numbers of times. Sometimes, it is not enough to only display the data on

the console.

The data to be displayed may be very large, and only a limited amount of data

can be displayed on the console, and since the memory is volatile, it is impossible to

recover the programmatically generated data again and again.

However, if we need to do so, we may store it onto the local file system which

is volatile and can be accessed every time. Here, comes the need of file handling in

C.

File handling in C enables us to create, update, read, and delete the files stored on

the local file system through our C program. The following operations can be

performed on a file.

o Creation of the new file

o Opening an existing file

o Reading from the file

o Writing to the file

o Deleting the file

No. Function Description

1 fopen() opens new or existing file

UNIT - V

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai 2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc() reads a character from file

6 fclose() closes the file

7 fseek() sets the file pointer to given position

8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

11 rewind() sets the file pointer to the beginning of the file

Defining and opening a file:

If we want to store data in a file into the secondary memory, we must

specify certain things about the file to the operating system. They include the

1.fielname, 2.data structure, 3.purpose.

The general format of the function used for opening a file is

FILE *fp;

fp=fopen(“filename”,”mode”);
The first statement declares the variable fp as a pointer to the data type FILE. As

stated earlier, File is a structure that is defined in the I/O Library. The second

statement opens the file named filename and assigns an identifier to the FILE type

pointer fp.

This pointer, which contains all the information about the file, is subsequently used

as a communication link between the system and the program. The second

statement also specifies the purpose of opening the file. The mode does this job.

R open the file for read only.

W open the file for writing only.

A open the file for appending data to it.

Consider the following statements:

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
FILE *p1, *p2;

p1=fopen(“data”,”r”);

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
p2=fopen(“results”,”w”);

In these statements the p1 and p2 are created and assigned to open the files data

and results respectively the file data is opened for reading and result is opened for

writing. In case the results file already exists, its contents are deleted and the files

are opened as a new file. If data file does not exist error will occur.

Closing a file:

The input output library supports the function to close a file; it is in the following

format.

fclose(file_pointer);

A file must be closed as soon as all operations on it have been completed. This

would close the file associated with the file pointer.

Observe the following program.

….
FILE *p1 *p2;

p1=fopen (“Input”,”w”);
p2=fopen (“Output”,”r”);
….
…
fclose(p1);

fclose(p2)

The above program opens two files and closes them after all operations on them

are completed, once a file is closed its file pointer can be reversed on other file.

The getc and putc functions are analogous to getchar and putchar functions and

handle one character at a time.

The putc function writes the character contained in character variable c to the file

associated with the pointer fp1. ex putc(c,fp1); similarly getc function is used to

read a character from a file that has been open in read mode.

c=getc(fp2).

The program shown below displays use of a file operations. The data enter through

the keyboard and the program writes it.

Character by character, to the file input. The end of the data is indicated by

entering an EOF character, which is control-z. the file input is closed at this signal.

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

fputc(char, file_pointer): It writes a character to the file pointed to by

file_pointer.

fputs(str, file_pointer): It writes a string to the file pointed to by file_pointer.

fprintf(file_pointer, str, variable_lists): It prints a string to the file pointed to

by file_pointer. The string can optionally include format specifiers and a list

of variables variable_lists.

The program below shows how to perform writing to a file:

fputc() Function:

#include <stdio.h>

int main() {

int i;

FILE * fptr;

char fn[50];

#include< stdio.h >

main()

{

file *f1;

printf(“Data input output”);
f1=fopen(“Input”,”w”); /*Open the file Input*/

while((c=getchar())!=EOF) /*get a character from key board*/

putc(c,f1); /*write a character to input*/

fclose(f1); /*close the file input*/

printf(“nData outputn”);
f1=fopen(“INPUT”,”r”); /*Reopen the file input*/

while((c=getc(f1))!=EOF)

printf(“%c”,c);
fclose(f1);

}

I/O Operations on files:

Writing to a File:

In C, when you write to a file, newline characters ‘\n’ must be explicitly added.

The stdio library offers the necessary functions to write to a file:

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

1. In the above program, we have created and opened a file called fputc_test.txt

in a write mode and declare our string which will be written into the file.

2. We do a character by character write operation using for loop and put each

character in our file until the “\n” character is encountered then the file is
closed using the fclose function.

fputs () Function:

#include <stdio.h>

int main() {

char str[] = "Guru99 Rocks\n";

fptr = fopen("fputc_test.txt", "w"); // "w" defines "writing mode"

for (i = 0; str[i] != '\n'; i++) {

/* write to file using fputc() function */

fputc(str[i], fptr);

}

fclose(fptr);

return 0;

}

Output:

The above program writes a single character into the fputc_test.txt file until it

reaches the next line symbol “\n” which indicates that the sentence was
successfully written. The process is to take each character of the array and write it

into the file.

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

1. In the above program, we have created and opened a file called fputs_test.txt

in a write mode.

2. After we do a write operation using fputs() function by writing three

different strings

3. Then the file is closed using the fclose function.

fprintf()Function:

#include <stdio.h>

int main() {

FILE *fptr;

fptr = fopen("fprintf_test.txt", "w"); // "w" defines "writing mode"

/* write to file */

fprintf(fptr, "Learning C with Guru99\n");

fclose(fptr);

return 0;

}

FILE * fp;

fp = fopen("fputs_test.txt", "w+");

fputs("This is Guru99 Tutorial on fputs,", fp);

fputs("We don't need to use for loop\n", fp);

fputs("Easier than fputc function\n", fp);

fclose(fp);

return (0);

}

OUTPUT:

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

1. In the above program we have created and opened a file called

fprintf_test.txt in a write mode.

2. After a write operation is performed using fprintf() function by writing a

string, then the file is closed using the fclose function.

Reading data from a File:

There are three different functions dedicated to reading data from a file

fgetc(file_pointer): It returns the next character from the file pointed to by

the file pointer. When the end of the file has been reached, the EOF is sent

back.

fgets(buffer, n, file_pointer): It reads n-1 characters from the file and stores

the string in a buffer in which the NULL character ‘\0’ is appended as the
last character.

fscanf(file_pointer, conversion_specifiers, variable_adresses): It is used to

parse and analyze data. It reads characters from the file and assigns the input

to a list of variable pointers variable_adresses using conversion specifiers.

Keep in mind that as with scanf, fscanf stops reading a string when space or

newline is encountered.

The following program demonstrates reading from fputs_test.txt file using

fgets(),fscanf() and fgetc () functions respectively :

#include <stdio.h>

int main() {

FILE * file_pointer;

OUTPUT:

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

----read and parse data----

Read String1 |Learning|

Read String2 |C|

Read String3 |with|

Read String4 |Guru99|

----read the entire file----

Learning C with Guru99

printf("----read and parse data ---- \n");

file_pointer = fopen("fprintf_test.txt", "r"); //reset the pointer

char str1[10], str2[2], str3[20], str4[2];

fscanf(file_pointer, "%s %s %s %s", str1, str2, str3, str4);

printf("Read String1 |%s|\n", str1);

printf("Read String2 |%s|\n", str2);

printf("Read String3 |%s|\n", str3);

printf("Read String4 |%s|\n", str4);

printf("----read the entire file --- \n");

file_pointer = fopen("fprintf_test.txt", "r"); //reset the pointer

while ((c = getc(file_pointer)) != EOF) printf("%c", c);

fclose(file_pointer);

return 0;

}

Result:

----read a line----

Learning C with Guru99

char buffer[30], c;

file_pointer = fopen("fprintf_test.txt", "r");

printf("----read a line --- \n");

fgets(buffer, 50, file_pointer);

printf("%s\n", buffer);

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

1. In the above program, we have opened the file called “fprintf_test.txt” which

was previously written using fprintf() function, and it contains “Learning C
with Guru99” string. We read it using the fgets() function which reads line
by line where the buffer size must be enough to handle the entire line.

2. We reopen the file to reset the pointer file to point at the beginning of the

file. Create various strings variables to handle each word separately. Print

the variables to see their contents. The fscanf() is mainly used to extract and

parse data from a file.

3. Reopen the file to reset the pointer file to point at the beginning of the file.

Read data and print it from the file character by character using getc()

function until the EOF statement is encountered

4. After performing a reading operation file using different variants, we again

closed the file using the fclose function.

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Error handling is not supported by C language. There are some other ways by which

error handling can be done in C language. The header file “error.h” is used to print
the errors using return statement function.

It returns -1 or NULL in case of any error and errno variable is set with the error

code. Whenever a function is called in C language, errno variable is associated with

it. errno is a global variable and is used to find the type of error in the execution.

The following table displays some errors −

There are some methods to handle errors in C language −

Sr.No Errors & Error value

1 I/O Error

5

2 No such file or directory

2

3 Argument list too long

7

4 Out of memory

12

5 Permission denied

13

Error Handling during i/o operations:

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
• perror() − This function is used to print the error and it returns the string along

with the textual representation of current errno value.

• strerror() − This function is declared in “string.h” header file and it returns the

pointer to the string of current errno value.

• Exit status − There are two constants EXIT_SUCCESS and EXIT_FAILURE

which can be used in function exit() to inform the calling function about the

error.

• Divided by zero − This is a situation in which nothing can be done to handle
this error in C language. Avoid this error and you can check the divisor value

by using ‘if’ condition in the program.

Here is an example of error handling in C language,

Example

Output

Here is the output

#include <stdio.h>

#include <stdlib.h>

main() {

int x = 28;

int y = 8;

int z;

if(y == 0) {

fprintf(stderr, "Division by zero!\n");

exit(EXIT_FAILURE);

}

z = x / y;

fprintf(stderr, "Value of z : %d\n", z);

exit(EXIT_SUCCESS);

}

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

fseek():

This function is used for seeking the pointer position in the file at the

specified byte.

Syntax: fseek(file pointer, displacement, pointer position);

Where

file pointer ---- It is the pointer which points to the file.

displacement ----- It is positive or negative.This is the number of bytes which

are skipped backward (if negative) or forward(if positive) from the current

position.This is attached with L because this is a long integer.

Pointer position:

This sets the pointer position in the file.

Value pointer position

0 Beginning of file.

1 Current position

2 End of file

Ex:

1) fseek(p,10L,0)

0 means pointer position is on beginning of the file,from this statement pointer

position is skipped 10 bytes from the beginning of the file.

2)fseek(p,5L,1)

1 means current position of the pointer position.From this statement pointer

Random Access To File:

There is no need to read each record sequentially, if we want to access a particular

record.C supports these functions for random access file processing.

1. fseek()

2. ftell()

3. rewind()

Value of z : 3

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
position is skipped 5 bytes forward from the current position.

3)fseek(p,-5L,1)

From this statement pointer position is skipped 5 bytes backward from the current

position.

ftell()

This function returns the value of the current pointer position in the file.The value

is count from the beginning of the file.

Syntax: ftell(fptr);

Where fptr is a file pointer.

rewind()

This function is used to move the file pointer to the beginning of the given file.

Syntax: rewind(fptr);

Where fptr is a file pointer.

Example program for fseek():

Write a program to read last ‘n’ characters of the file using appropriate file

functions(Here we need fseek() and fgetc()).

01 #include<stdio.h>

02 #include<conio.h>

03 void main()

04 {

05 FILE *fp;

06 char ch;

07 clrscr();

08 fp=fopen("file1.c", "r");

09 if(fp==NULL)

10 printf("file

cannot be

opened");

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

OUTPUT: It depends on the content in the file.

Command Line Arguments in C:

The arguments passed from command line are called command line arguments.

These arguments are handled by main() function.

To support command line argument, you need to change the structure of main()

function as given below.

1. int main(int argc, char *argv[])

Here, argc counts the number of arguments. It counts the file name as the first

argument.

11 else

12 {

13 printf("Enter

value of n to

read last ‘n’
characters");

14 scanf("%d",&n);

15 fseek(fp,-

n,2);

16 while((ch=fgetc(fp))!=EOF)

17 {

18 printf("%c\t",ch);

19 }

20 }

21 fclose(fp);

22 getch();

23 }

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
The argv[] contains the total number of arguments. The first argument is the file

name always.

Skip Ad

Example

Let's see the example of command line arguments where we are passing one

argument with file name.

1. #include <stdio.h>

2. void main(int argc, char *argv[]) {

3.

4. printf("Program name is: %s\n", argv[0]);

5.

6. if(argc < 2){

7. printf("No argument passed through command line.\n");

8. }

9. else{

10. printf("First argument is: %s\n", argv[1]);

11. }

12.}

Run this program as follows in Linux:

1. ./program hello

Run this program as follows in Windows from command line:

1. program.exe hello

Output:

Program name is: program

First argument is: hello

If you pass many arguments, it will print only one.

1. ./program hello c how r u

Output:

Program name is: program

First argument is: hello

But if you pass many arguments within double quote, all arguments will be treated

as a single argument only.

1. ./program "hello c how r u"

Output:

 Program name is: program

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

PREPROCESSORS

The C Preprocessor is not a part of the compiler, but is a separate step in the

compilation process. In simple terms, a C Preprocessor is just a text substitution

tool and it instructs the compiler to do required pre-processing before the actual

compilation. We'll refer to the C Preprocessor as CPP.

All preprocessor commands begin with a hash symbol (#). It must be the first

nonblank character, and for readability, a preprocessor directive should begin in the

first column. The following section lists down all the important preprocessor

directives −

Sr.No. Directive & Description

1 #define

Substitutes a preprocessor macro.

2 #include

Inserts a particular header from another file.

3 #undef

Undefines a preprocessor macro.

4 #ifdef

Returns true if this macro is defined.

5 #ifndef

Returns true if this macro is not defined.

6 #if

Tests if a compile time condition is true.

7 #else

The alternative for #if.

8 #elif

First argument is: hello c how r u

You can write your program to print all the arguments. In this program, we are

printing only argv[1], that is why it is printing only one argument.

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

#else and #if in one statement.

9 #endif

Ends preprocessor conditional.

10 #error

Prints error message on stderr.

11 #pragma

Issues special commands to the compiler, using a standardized method.

Preprocessors Examples

Analyze the following examples to understand various directives.

#define MAX_ARRAY_LENGTH 20

This directive tells the CPP to replace instances of MAX_ARRAY_LENGTH with

20. Use #define for constants to increase readability.

#include <stdio.h>

#include "myheader.h"

These directives tell the CPP to get stdio.h from System Libraries and add the text

to the current source file. The next line tells CPP to get myheader.h from the local

directory and add the content to the current source file.

#undef FILE_SIZE

#define FILE_SIZE 42

It tells the CPP to undefine existing FILE_SIZE and define it as 42.

#ifndef MESSAGE

#define MESSAGE "You wish!"

#endif

It tells the CPP to define MESSAGE only if MESSAGE isn't already defined.

#ifdef DEBUG

/* Your debugging statements here */

#endif

It tells the CPP to process the statements enclosed if DEBUG is defined. This is

useful if you pass the -DDEBUG flag to the gcc compiler at the time of compilation.

This will define DEBUG, so you can turn debugging on and off on the fly during

compilation.

Files/ Prog. For Prob.Solving / Dr.M.Mohankumar /AIML/SNSCT

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

