

(An Autonomous Institution) COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

## UNIT II: ELECTRIC PROPULSION UNIT

**TOPIC: Permanent Magnet Motor drives** 

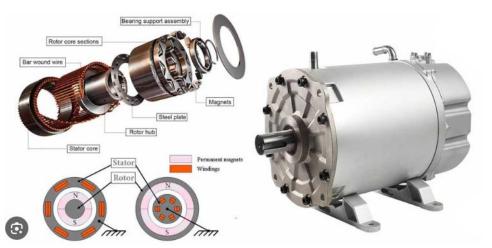




## **Introduction to Permanent Magnet Motors**

- What are Permanent Magnet Motors (PMMs)?
  - Motors using permanent magnets in the rotor to create a constant magnetic field.
  - High efficiency and power density.
- Types of PM Motors:
  - Permanent Magnet Synchronous Motors (PMSM).
  - Brushless DC Motors (BLDC).




01/11/2024

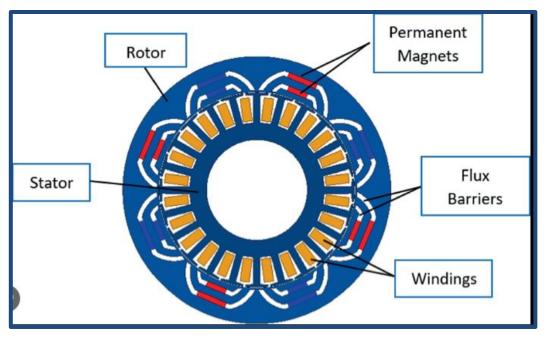
19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE



## **Construction of PM Motors**

- Stator and Rotor Structure:
  - Stator with three-phase windings similar to induction motors.
  - Rotor equipped with permanent magnets.
- Difference from Other Motors:
  - No windings on the rotor; relies on permanent magnets for field excitation.
- Image / Diagram: Basic structure with labeled parts (stator, rotor, magnets).




01/11/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE



#### Working Principle of PM Motors

- Fundamental Principle:
  - Rotational force generated by the interaction between magnetic fields of the stator and rotor.
- Synchronous Operation:
  - Rotor speed matches the frequency of the stator field in PMSMs.
- BLDC Motor Operation:
  - Electronic commutation controls the stator current phases.



01/11/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE



## Types of Permanent Magnet Motors

- Permanent Magnet Synchronous Motors (PMSM):
  - High efficiency and precision.
  - Used in servo drives, industrial applications.

## • Brushless DC Motors (BLDC):

- Electronic commutation.
- Used in consumer electronics, EVs, and robotics.
- Image/Comparison Table: Illustrate key differences and uses.

01/11/2024

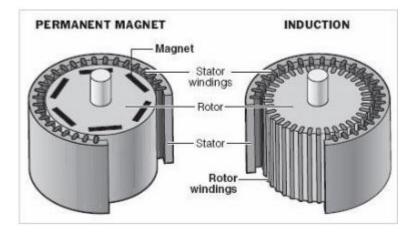
19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE



## **Power Electronics in PM Motor Drives**

- Role of Inverters and Controllers:
  - Inverters convert DC power to AC for synchronous operation.
  - Controllers regulate speed and torque.
- Control Requirements:
  - Precise control of phase currents and rotor position sensing.








07/12

## **Control Techniques for PM Motors**

- Vector Control (Field-Oriented Control) for PMSMs:
  - Decouples torque and flux control for efficient operation.
- Direct Torque Control (DTC):
  - Directly controls torque and flux without complex coordinate transformations.
- Electronic Commutation for BLDC Motors:
  - Simplifies control by switching stator phases as rotor position changes.



19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE



08/12

#### **Advantages of Permanent Magnet Motors**

- High Efficiency:
  - Permanent magnets reduce copper losses on the rotor.
- Compact and Lightweight:
  - Higher power density, allowing for smaller motor sizes.
- Precision and Control:
  - Suitable for applications requiring precise speed and position control.
- Energy Efficiency:
  - Lower energy consumption, beneficial in battery-operated systems.







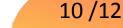
#### **Disadvantages of Permanent Magnet Motors**

- High Cost of Permanent Magnets:
  - Especially rare-earth magnets like Neodymium.
- Demagnetization Risk:
  - Under high temperatures or current surges, magnets may lose their strength.
- Complex Control Requirements:
  - Requires sophisticated control techniques and sensors for precise operation.










### **Applications of PM Motors**

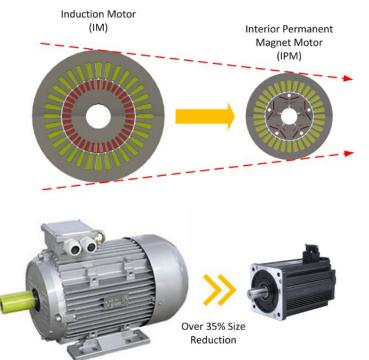
- Industrial Automation:
  - Robotics, CNC machines, servo drives.
- Electric Vehicles (EVs):
  - High efficiency and torque make PMSMs ideal for EV traction motors.
- Consumer Electronics:
  - Fans, compressors, drones, and home appliances.
- Aerospace and Defense:
  - Actuators, unmanned systems, and high-performance applications.












#### Comparison with Other Motor Types

- PMMs vs. Induction Motors, SRMs, and DC Motors:
  - Efficiency, power density, cost, and control complexity.
- When PMMs are Preferred:
  - Applications demanding high efficiency, compact size, and precise control.

#### **Challenges and Future Trends in PM Motor Drives**

- Cost and Availability of Rare-Earth Magnets:
  - Alternative materials and magnet recycling are areas of research.
- Advances in Control Techniques:
  - Improved algorithms for sensorless control and efficiency.
- Emerging Applications:
  - Increased use in renewable energy, EVs, and high-tech manufacturing.





#### **Summary and Conclusion**

- Recap of Key Points:
  - PM Motors offer high efficiency, precision, and are used in a wide range of applications.
  - Ongoing innovations focus on cost reduction and control improvements.
- Conclusion:
  - PM Motors continue to grow in importance, especially in sectors focused on efficiency and sustainability.

# ...THANK YOU



