

(An Autonomous Institution) COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

UNIT III: REQUIREMENTS IN HYBRID AND ELECTRIC VEHICLES

TOPIC: Energy Management Strategies

01/12

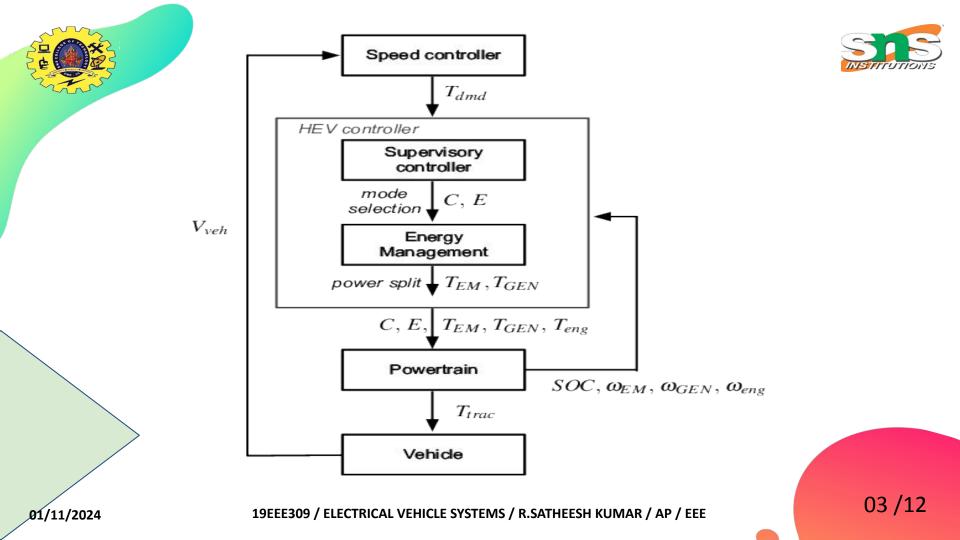
01/11/2024

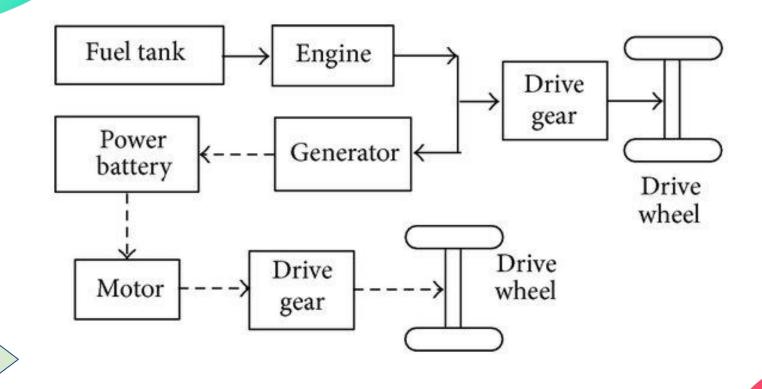
19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

STATUTIONS

Introduction

Title: Why Energy Management Matters in EVs


- The Challenge:
 - Balancing energy consumption, performance, and range in EVs.
- Importance of Energy Management:
 - Enhances battery life.
 - Improves vehicle efficiency.
 - Reduces environmental impact.



01/11/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

04 /12

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

01/11/2024

Objectives of Energy Management

- Maximize Driving Range
- Optimize Battery Life and Health
- Ensure Safety and Thermal Stability
- Enhance Driving Performance
- Integrate with Renewable Energy Sources

Key Energy Management Strategies

1. Battery Energy Management (BEMS)

- State of Charge (SOC) monitoring.
- State of Health (SOH) estimation.
- Thermal management for optimal battery performance.

2. Regenerative Braking

- Captures kinetic energy during braking.
- Converts it back to electrical energy stored in the battery.

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

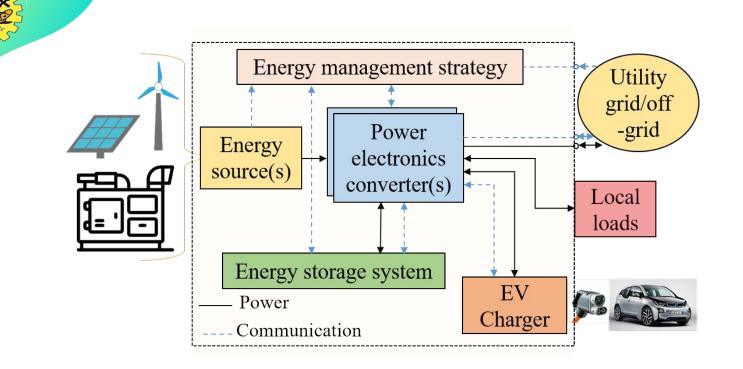
3. Thermal Management

STA

- Maintaining optimal temperature for battery and power electronics.
- Strategies: Liquid cooling, air cooling, and phase change materials.

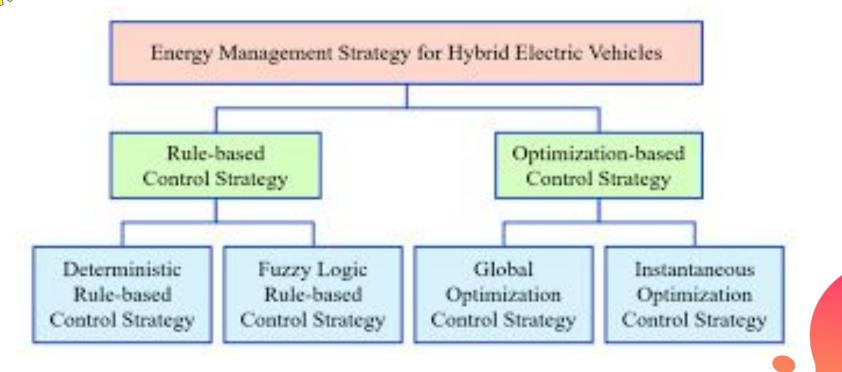
4. Eco-Driving Modes

- Adaptive driving modes for efficiency:
 - **Eco Mode:** Prioritizes efficiency over performance.
 - **Sport Mode:** Prioritizes performance over efficiency.



Advanced Energy Management Technologies

- 1. Artificial Intelligence (AI) & Machine Learning (ML):
 - Predictive energy management based on driving patterns.
 - Real-time energy optimization.
- 2. Vehicle-to-Grid (V2G) Technology:
 - EVs act as energy storage for the grid.
 - Bidirectional energy flow between vehicle and grid.
- 3. Smart Energy Management Systems (SEMS):
 - Integrates with home energy systems and renewable sources.


19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

01/11/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

Regenerative Braking in Detail

Title: Regenerative Braking: Turning Motion into Energy

- How It Works:
 - Converts kinetic energy into electrical energy.
 - Stores the energy back into the battery.
- Benefits:
 - Increases range.
 - Reduces brake wear and maintenance.

Role of Thermal Management

Title: Keeping Cool: The Role of Thermal Management

- Challenges:
 - Batteries generate heat during charging and discharging.
 - Excessive heat can degrade battery life and reduce efficiency.

• Solutions:

- Liquid cooling systems.
- Heat pumps for temperature control.
- Smart ventilation systems.

01/11/2024

AI and Machine Learning for Energy Management

Title: Smarter Energy Management with AI

- Data Sources:
 - GPS data, driving patterns, battery state, and external conditions.

• Applications:

- Predictive maintenance.
- Adaptive energy optimization based on driving behavior.
- Real-time route optimization for maximum efficiency.

MSTITUTIONS

Case Studies

1. Tesla's Energy Management System:

- Uses AI to optimize battery performance and range.
- Integration with Tesla's Supercharger network for fast charging.

2. Nissan Leaf:

- Regenerative braking system for enhanced range.
- Eco-driving modes for energy efficiency.

3. **BMW i3:**

- Advanced thermal management for improved battery life.
- Seamless integration with renewable energy sources

Future Trends in Energy Management

- Wireless Charging: Dynamic charging while the vehicle is in motion.
- Solid-State Batteries: Higher energy density and faster charging.
- Integration with Smart Grids: Intelligent load balancing and energy distribution.
- Energy Harvesting: Utilizing solar panels and other sources for auxiliary power

Conclusion

- Driving the Future of Energy Management
 - Key Takeaways:
 - Energy management is crucial for EV performance, efficiency, and sustainability.
 - Advanced technologies like AI, regenerative braking, and thermal management are reshaping the industry.
 - Continued innovation will drive the future of electric mobility.

...THANK YOU

01/11/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE