

(An Autonomous Institution) COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

UNIT III: REQUIREMENTS IN HYBRID AND ELECTRIC VEHICLES TOPIC: **Hybridization of different energy storage devices**

01/11/2024

01/11/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

Introduction

• Why Hybridization in EVs?

- Increasing demand for longer driving range, better efficiency, and reduced charging time.
- Single energy storage devices often have limitations.
- Hybridization leverages the strengths of different technologies.
- Objective of the Presentation:
 - To explore various hybrid energy storage systems
 (HESS) for electric vehicles (EVs).

03/12

Energy Storage Devices in EVs

- Primary Energy Storage Technologies:
 - Batteries: Lithium-Ion (Li-ion), Solid-state, Nickel-Metal Hydride (NiMH)
 - **Supercapacitors:** High power density but low energy density
 - **Fuel Cells:** Hydrogen-based, zero emissions, high energy density

01/11/2024

Challenges with Single Energy Storage

• Batteries:

- Long charging time
- Limited lifespan and thermal issues
- Moderate power density

• Supercapacitors:

- Limited energy storage capacity
- Not suitable for long distances
- Fuel Cells:
 - Hydrogen storage and infrastructure challenges
 - High costs

04/12

01/11/2024

Hybrid Energy Storage System (HESS)

• What is HESS?

• A combination of two or more energy storage devices working together to optimize performance.

• Benefits:

- Improved energy and power density
- Enhanced efficiency and lifespan
- Better thermal management
- Fast charging and discharging capabilities

01/11/2024

Common Hybrid Configurations

- 1. Battery + Supercapacitor
 - Battery provides energy for long-range
 - Supercapacitor delivers power for acceleration and regenerative braking
 - Benefits: Improved lifespan, efficiency, and reduced thermal issues
- 2. Battery + Fuel Cell
 - Battery for immediate power needs
 - Fuel cell provides sustained energy
 - Benefits: Increased range, zero emissions, and lower battery size requirements
- 3. Fuel Cell + Supercapacitor
 - Supercapacitor handles power fluctuations
 - Fuel cell delivers continuous energy
 - Benefits: Smooth power delivery and improved efficiency

01/11/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

06/12

Working Principle of HESS

- Energy Flow Management:
 - Power distribution managed by a control unit or power electronic converters.
 - Intelligent Energy Management System (EMS) optimizes performance.

Diagram: (Insert a schematic showing energy flow between components in a hybrid system.)

Advantages of HESS for EVs

- Higher energy density and power density
- Enhanced range and acceleration
- Faster charging and discharging
- Better thermal stability and longevity
- Regenerative braking efficiency

Challenges in Implementing HESS

- Cost:
 - High initial cost due to multiple devices and control systems.
- Complexity:
 - Integration and management of hybrid systems are technically challenging.
- Size and Weight:
 - Increased system complexity may affect vehicle weight and size.
- Infrastructure:
 - Hydrogen fuel cells require significant infrastructure development.

09/12

Future Trends and Innovations

- Solid-state batteries and hybrid supercapacitors
- Hydrogen storage advancements for fuel cells
- AI and Machine Learning in Energy Management Systems
- Lightweight materials to reduce weight penalties

Case Studies

- Tesla Model S Plaid:
 - Battery-dominated hybrid energy management
- Toyota Mirai:
 - Fuel cell-powered EV with hybrid storage for better range
- Formula E Cars:
 - Use of supercapacitors for rapid energy release

Conclusion

- Hybridization of energy storage devices is key to addressing current EV limitations.
- It improves performance, range, and overall efficiency of EVs.
- Continued innovation is essential for widespread adoption and cost reduction.

...THANK YOU

01/11/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

12/12