

(An Autonomous Institution) COIMBATORE-35

### Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

# **UNIT V: BUSINESS**



TOPIC: V2G, G2V





#### Introduction

- What are V2G and G2V?
  - G2V (Grid-to-Vehicle): Energy transfer from the grid to charge EV batteries.
  - V2G (Vehicle-to-Grid): EVs supply stored energy back to the grid when needed.

#### Importance:

- Balancing grid load.
  - Optimizing renewable energy integration.
  - Reducing energy costs for EV
    - owners.

INSTITUTIONS



Energy flow during G2V and V2G operating modes

09/12/2024





03/12

## How V2G and G2V Work

- Components Involved:
  - Smart chargers and bidirectional inverters.
  - Connected grid infrastructure.
  - Advanced software for energy management.
- Energy Flow Cycle:

09/12/2024

○ Charging (G2V) → Energy storage → Discharge to grid (V2G).

# NSTITUTIONS

#### **Benefits of V2G and G2V**

- For the Grid:
  - Demand response management.
  - Stabilization during peak loads.
  - Backup power supply during outages.

#### • For EV Owners:

- Potential to earn income by supplying energy to the grid.
- Reduced electricity bills.

#### • For the Environment:

- Efficient use of renewable energy sources.
- Reduction in reliance on fossil fuel power plants.





09/12/2024



### **Applications of V2G**

- Renewable Energy Integration:
  - Storing solar/wind energy during off-peak hours.
  - Supporting intermittent energy generation.
- Fleet Electrification:
  - Managing large-scale energy for EV fleets.

#### • Disaster Recovery:

• Powering critical infrastructure during grid failures.



09/12/2024





09/12/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

06/12



07 / 12

## **Challenges in Implementation**

- Technical Barriers:
  - Need for bidirectional charging technology.
  - Battery wear due to frequent charging/discharging.

#### • Economic Factors:

- High initial cost of infrastructure.
- Uncertain financial incentives for EV owners.
- Regulatory Hurdles:
  - Need for clear policies and standards.





# Global Examples of V2G Initiatives

- Japan:
  - Nissan's V2G-enabled LEAF for energy balancing.
- Denmark:
  - Large-scale V2G projects with renewable energy integration.
- USA:
  - Pilot projects in California supporting grid stability.



09

### **Future Outlook**

- Projections:
  - Growing adoption of bidirectional charging systems.
  - Integration with smart cities and IoT-enabled grids.
- Role of Al and Blockchain:
  - Optimizing energy transactions.
  - Enhancing grid security.



10/12

#### Conclusion

- Key Takeaways:
  - V2G and G2V are essential for a sustainable energy ecosystem.
  - Collaboration among governments, utilities, and manufacturers is vital.
  - Early adoption challenges are outweighed by long-term benefits.
- Call to Action:
  - "Be part of the revolution—drive smarter, power smarter."















# ...THANK YOU

09/12/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

12/12