

(An Autonomous Institution) COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

UNIT V: BUSINESS

TOPIC: V2B, V2H

01/12

09/12/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

Introduction

- Overview of V2X (Vehicle-to-Everything) technology.
- Importance of sustainable energy solutions.
- Role of electric vehicles (EVs) in energy management.
- Focus on V2B and V2H applications.

What is V2B?

- Definition: Vehicle-to-Building (V2B) involves using an EV's battery to supply energy to buildings.
- Key Features:
 - Energy cost savings by offsetting peak demand.
 - Support for renewable energy integration.
 - Enhances building resilience during power outages.
- Example: Powering commercial buildings, schools, or offices during emergencies or high-demand periods.

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

What is V2H?

- Definition: Vehicle-to-Home (V2H) allows EVs to supply energy directly to residential homes.
- Key Features:
 - Backup power during outages.
 - Reduced electricity bills by utilizing stored energy during peak hours.
 - Supports smart home energy management systems.
 - Example: Using an EV to power essential appliances during a grid outage.

09/12/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

04 / 12

How V2B and V2H Work

- Bidirectional charging technology enables energy flow between EVs and buildings/homes.
- Key Components:
 - 1. EV with bidirectional charging capability.
 - 2. Bidirectional charger or inverter.
 - 3. Energy management system (EMS).
 - Process Overview:
 - 1. Energy stored in the EV battery.
 - Energy transferred to building/home as needed.
 - 6. Grid synchronization to maintain stability.

09/12/2024

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

Benefits of V2B and V2H

- Cost Savings:
 - Reduced peak demand charges.
 - Lower reliance on grid electricity.
- Sustainability:
 - Better integration of renewable energy.
 - Reduced carbon footprint.
- Energy Resilience:
 - Backup power during outages.
 - Enhanced grid stability.
- Optimized Energy Usage:
 - Demand response programs.
 - Smart load balancing.

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

06/12

Challenges and Limitations

- High Initial Costs:
 - Expensive bidirectional chargers.
 - Advanced EV models required.
- Battery Degradation:
 - Frequent charging/discharging impacts battery life.
- Regulatory and Technical Barriers:
 - Lack of standardized protocols.
 - Grid compatibility issues.
- Awareness and Adoption:
 - Limited public knowledge and acceptance.

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

Case Studies and Examples

- Example 1: V2B Implementation in a Commercial Building
 - Location: [Specify location if known]
 - Results: Reduced peak energy costs by 25%.
- Example 2: V2H Backup Power Usage
 - Scenario: Power outage during a storm.
 - Results: Powered essential appliances for 12 hours.
- Leading Companies:
 - Nissan's Leaf-to-Home systems.
 - Tesla's Powerwall integration.

08/12

Future Prospects

- Advancements in EV battery technology.
- Wider adoption of renewable energy sources.
- Development of smart grids and V2X standards.
- Government incentives for V2B and V2H technologies.
- Potential integration with IoT and AI for smarter energy management.

Conclusion

- V2B and V2H are transformative solutions for energy sustainability and resilience.
- They unlock the potential of EVs beyond transportation.
- Collaboration among stakeholders is essential for overcoming challenges.
- The future is promising with advancements in technology and policy support.

...THANK YOU

12/12

19EEE309 / ELECTRICAL VEHICLE SYSTEMS / R.SATHEESH KUMAR / AP / EEE

09/12/2024