SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE- 641 035 QL5171 4115775

Department of Computer Science and Engineering
23ITT101 - PROGRAMMING IN C AND DATA STRUCTURES
UNIT IV STACK AND QUEUE

STACK ADT

A stack is an Abstract Data Type (ADT), that is popularly used in most programming languages.
It is named stack because it has the similar operations as the real-world stacks, for example — a
pack of cards or a pile of plates, etc.

The stack follows the LIFO (Last in - First out) structure where the last element inserted would be
the first element deleted.

Stack Representation

A Stack ADT allows all data operations at one end only. At any given time, we can only access
the top element of a stack.

The following diagram depicts a stack and its operations —

woworg weq

Last In - First Out
Push

o
@]
©

Data Element Data Element
Data Element Data Element
Data Element Data Element

: Data Element Data Element

Data Element Data Element

Stack Stack

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack can
either be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to
implement stack using arrays, which makes it a fixed size stack implementation.

Basic Operations on Stacks

Stack operations usually are performed for initialization, usage and, de-initialization of the stack
ADT.

The most fundamental operations in the stack ADT include: push(), pop(), peek(), isFull(),
iISEmpty(). These are all built-in operations to carry out data manipulation and to check the status
of the stack.

Stack uses pointers that always point to the topmost element within the stack, hence called as
the top pointer.

PROGRAM:
#include<stdio.h>
int maxsize =8;
int stack[8];
int top =-1;
int isempty(){
if(top ==-1)
returnl;
else
return0;
}
int isfull(){
if(top == maxsize)
returnl;
else
return0;

}

int peek(){
return stack[top];
h
int pop(){
int data;
if(lisempty()){
data = stack[top];

top = top -1;
return data;
telse{

printf(“could not retrieve data, stack is empty.\n”);

h
b

int push(int data){
if(lisfull()){
top =top +1;
stack[top]= data;
telse{
printf(“‘could not insert data, stack is full.\n");

j
j

int main(){
push(3);
push(5);
push(9);
push(1);
push(12);
push(15);
printf(“‘element at top of the stack: %d\n”,peek());
printf(“elements: \n”);
while(!isempty()){
int data = pop();
printf(“%d\n”,data);
§
printf(“stack full: %s\n”, isfull()?”’true”:’false”);
printf(“’stack empty: %s\n”, isempty()?”’true”:false”);
return(;

}

OUTPUT:
Element at top of the stack: 15
Elements:
15
12
1
9
5
3
Stack full: false
Stack empty: true

Insertion: push()

push() is an operation that inserts elements into the stack. The following is an algorithm that
describes the push() operation in a simpler way.

Algorithm
1 — Checks if the stack is full.
2 — If the stack is full, produces an error and exit.

3 — If the stack is not full, increments top to point next empty space.
4 — Adds data element to the stack location, where top is pointing.

5 — Returns success.

Example

Following are the implementations of this operation

#include <stdio.h>

int MAXSIZE =8

int stack|8

inttop =-1

[* Check if the stack is full*/
int isfull
if(top == MAXSIZE
return 1
else

return O

/* Function to insert into the stack */
int push(int data
if(tisfull
top=top+1
stack[top| = data
else

printf("Could not insert data, Stack is full.\n"

/* Main function */
int main
int i
push(44
push(10
push(62
push(123
push(15
printf("Stack Elements: \n"

/[print stack data
for(i=0;i<8;i++
printf("%d ", stack(i

return O

Output
Stack Elements:
441062 12315000

Note — In Java we have used to built-in method push() to perform this operation.

Deletion: pop()

pop() is a data manipulation operation which removes elements from the stack. The following
pseudo code describes the pop() operation in a simpler way.

Algorithm

1 — Checks if the stack is empty.

2 — If the stack is empty, produces an error and exit.

3 — If the stack is not empty, accesses the data element at which top is pointing.
4 — Decreases the value of top by 1.

5 — Returns success.

Example
Following are the implementations of this operation

#include <stdio.h>

int MAXSIZE = 8;
int stack|8];
int top = -1;

/* Check if the stack is empty */
int isempty(){
if(top ==-1)
return 1;
else

return O;

/[* Check if the stack is full*/
int isfull (){
if(top == MAXSIZE)
return 1;
else

return O;

/* Function to delete from the stack */
int pop(){
int data;
if(tisempty()) {
data = stack|top];
top = top - 1;
return data;
}else{
printf("Could not retrieve data, Stack is empty.\n");
}
b

/* Function to insert into the stack */
int push(int data){
if(tisfull()) {
top = top + 1;
stack[top]| = data;
}else {
printf("Could not insert data, Stack is full.\n");
}
}

/* Main function */
int main(){
inti;
push(44);
push(10);
push(62);
push(123);
push(15);
printf("Stack Elements: \n");

/[print stack data
for(i=0;i<8;i++) {
printf("%d ", stack[i]);
}
[*printf("Element at top of the stack: %d\n" ,peek());*/
printf("\nElements popped: \n");

/1 print stack data
while(lisempty()) {
int data = pop();

printf("%d " ,data

return O

Output

Stack Elements:

44 106212315000
Elements popped:
151236210 44

Note — In Java we are using the built-in method pop().

peek()

The peek() is an operation retrieves the topmost element within the stack, without deleting it. This
operation is used to check the status of the stack with the help of the top pointer.

Algorithm

1. START

2. return the element at the top of the stack

3. END

Example

Following are the implementations of this operation
#include <stdio.h>

int MAXSIZE =8

int stack|8

inttop =-1

[* Check if the stack is full */
int isfull
if(top == MAXSIZE
return 1
else

return O

/* Function to return the topmost element in the stack */

int peek(){
return stacktop];

¥

/* Function to insert into the stack */
int push(int data){
if(tisfull()) {
top = top + 1;
stack[top]| = data;
}else {
printf("Could not insert data, Stack is full.\n");
}
}

/* Main function */
int main(){
inti;
push(44);
push(10);
push(62);
push(123);
push(15);
printf("Stack Elements: \n");

/[print stack data
for(i=0;i<8;i++) {
printf("%d ", stack[i]);
}
printf("\nElement at top of the stack: %d\n" ,peek());

return O;

Output
Stack Elements:
44106212315000
Element at top of the stack: 15
isFull()

isFull() operation checks whether the stack is full. This operation is used to check the status of the
stack with the help of top pointer.

Algorithm

1. START

2. If the size of the stack is equal to the top position of the stack, the stack is full. Return 1.
3. Otherwise, return 0.

4. END

Example

Following are the implementations of this operation

#include <stdio.h>

int MAXSIZE = 8

int stack|8

inttop =-1

[* Check if the stack is full */
int isfull
if(top == MAXSIZE
return 1
else

return O

/* Main function */
int main
printf("Stack full: %s\n" , isfull()?"true™:"false"

return O

Output
Stack full: false

iISEmpty()

The isEmpty() operation verifies whether the stack is empty. This operation is used to check the
status of the stack with the help of top pointer.

Algorithm

1. START

2. If the top value is -1, the stack is empty. Return 1.
3. Otherwise, return 0.

4. END

Example

Following are the implementations of this operation
#include <stdio.h>

int MAXSIZE =8

int stack|8

inttop =-1

[* Check if the stack is empty */
int isempty
if(top ==-1
return 1
else

return O

/* Main function */
int main
printf("Stack empty: %s\n" | isempty()?"true™:"false"

return O

Output
Stack empty: true

