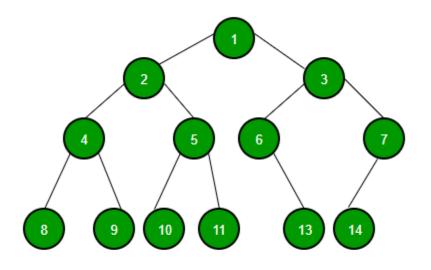


SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) COIMBATORE- 641 035


Department of Computer Science and Engineering

23ITT101 - PROGRAMMING IN C AND DATA STRUCTURES

UNIT IV STACK AND QUEUE

Binary Tree Data Structure

Binary Tree is defined as a tree data structure where each node has at most 2 children. Since each element in a binary tree can have only 2 children, we typically name them the left and right child.

Binary Tree Representation

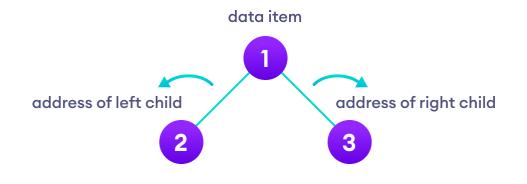
A Binary tree is represented by a pointer to the topmost node (commonly known as the "root") of the tree. If the tree is empty, then the value of the root is NULL. Each node of a Binary Tree contains the following parts:

- 1. Data
- 2. Pointer to left child
- 3. Pointer to right child

Basic Operation On Binary Tree:

- Inserting an element.
- Removing an element.
- Searching for an element.
- Traversing the tree.

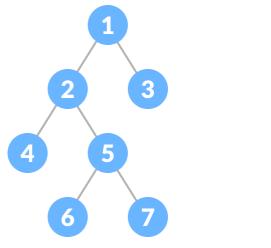
Auxiliary Operation On Binary Tree:


- Finding the height of the tree
- Find the level of a node of the tree
- Finding the size of the entire tree.

Binary Tree

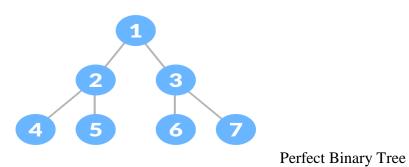
A binary tree is a tree data structure in which each parent node can have at most two children.

Each node of a binary tree consists of three items:


- data item
- address of left child
- address of right child

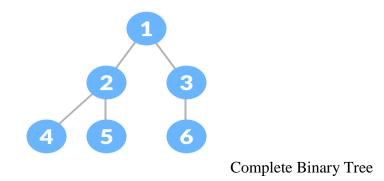
Types of Binary Tree

1. Full Binary Tree

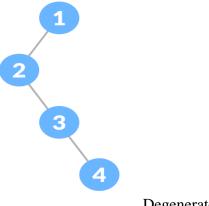

A full Binary tree is a special type of binary tree in which every parent node/internal node has either two or no children.

Full Binary Tree

2. Perfect Binary Tree

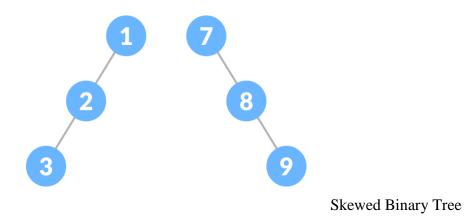

A perfect binary tree is a type of binary tree in which every internal node has exactly two child nodes and all the leaf nodes are at the same level.

3. Complete Binary Tree

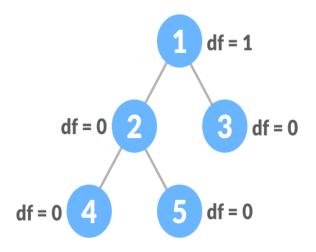

A complete binary tree is just like a full binary tree, but with two major differences

- 1. Every level must be completely filled
- 2. All the leaf elements must lean towards the left.
- 3. The last leaf element might not have a right sibling i.e. a complete binary tree doesn't have to be a full binary tree.

4. Degenerate or Pathological Tree


A degenerate or pathological tree is the tree having a single child either left or right.

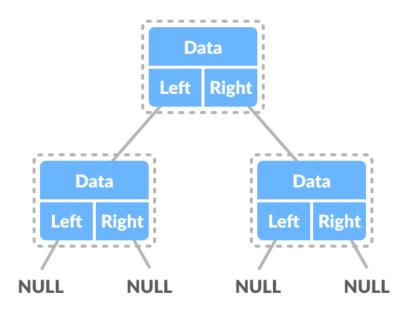
Degenerate Binary Tree


5. Skewed Binary Tree

A skewed binary tree is a pathological/degenerate tree in which the tree is either dominated by the left nodes or the right nodes. Thus, there are two types of skewed binary tree: **left-skewed binary tree** and **right-skewed binary tree**.

6. Balanced Binary Tree

It is a type of binary tree in which the difference between the height of the left and the right subtree for each node is either 0 or 1.



Balanced Binary Tree

Binary Tree Representation

A node of a binary tree is represented by a structure containing a data part and two pointers to other structures of the same type.

struct node { int data; struct nod struct nod };	le *left;		

Binary Tree Representation

Binary Tree Applications

- For easy and quick access to data In router algorithms •
- To implement heap data structure •
- Syntax tree •