
SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE- 641 035

Department of Computer Science and Engineering

23ITT101 - PROGRAMMING IN C AND DATA STRUCTURES

UNIT IV STACK AND QUEUE

Evaluation of Postfix Expression

Postfix expression: The expression of the form “a b operator” (ab+) i.e., when a pair of

operands is followed by an operator.

Examples:

Input: str = “2 3 1 * + 9 -“

Output: -4

Explanation: If the expression is converted into an infix expression, it will be 2 + (3 * 1) – 9 = 5

– 9 = -4.

Input: str = “100 200 + 2 / 5 * 7 +”

Output: 757

Evaluation of Postfix Expression using Stack:

To evaluate a postfix expression we can use a stack.

Iterate the expression from left to right and keep on storing the operands into a stack. Once an

operator is received, pop the two topmost elements and evaluate them and push the result in the

stack again.

Illustration:
Follow the below illustration for a better understanding:

Consider the expression: exp = “2 3 1 * + 9 -“

 Scan 2, it’s a number, So push it into stack. Stack contains ‘2’.

https://www.geeksforgeeks.org/introduction-to-stack-data-structure-and-algorithm-tutorials/

Push 2 into stack

 Scan 3, again a number, push it to stack, stack now contains ‘2 3’ (from bottom to top)

Push 3 into stack

 Scan 1, again a number, push it to stack, stack now contains ‘2 3 1’

Push 1 into stack

 Scan *, it’s an operator. Pop two operands from stack, apply the * operator on operands. We

get 3*1 which results in 3. We push the result 3 to stack. The stack now becomes ‘2 3’.

Evaluate * operator and push result in stack

 Scan +, it’s an operator. Pop two operands from stack, apply the + operator on operands.

We get 3 + 2 which results in 5. We push the result 5 to stack. The stack now becomes ‘5’.

Evaluate + operator and push result in stack

 Scan 9, it’s a number. So we push it to the stack. The stack now becomes ‘5 9’.

Push 9 into stack

 Scan -, it’s an operator, pop two operands from stack, apply the – operator on operands, we

get 5 – 9 which results in -4. We push the result -4 to the stack. The stack now becomes ‘-4’.

Evaluate ‘-‘ operator and push result in stack

 There are no more elements to scan, we return the top element from the stack (which is the

only element left in a stack).

So the result becomes -4.

Follow the steps mentioned below to evaluate postfix expression using stack:

 Create a stack to store operands (or values).

 Scan the given expression from left to right and do the following for every scanned element.

 If the element is a number, push it into the stack.

 If the element is an operator, pop operands for the operator from the stack.

Evaluate the operator and push the result back to the stack.

 When the expression is ended, the number in the stack is the final answer.

Example 1:

Input: S = "231*+9-"

Output: -4

Example 2:

Input: S = "123+*8-"

Output: -3

Example 3:

Input: S = 53+62/35+

Output: 68

Example 4:

Input: S = 10 5 60 6 / * 8 -

Output: 142

Example 5:

Input: S = 5 4 6 * 4 9 3 *

Output: 350

Below is the implementation of the above approach:

// C program to evaluate value of a postfix expression

#include <ctype.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// Stack type

struct Stack {

 int top;

 unsigned capacity;

 int* array;

};

// Stack Operations

struct Stack* createStack(unsigned capacity)

{

 struct Stack* stack

 = (struct Stack*)malloc(sizeof(struct Stack));

 if (!stack)

 return NULL;

 stack->top = -1;

 stack->capacity = capacity;

 stack->array

 = (int*)malloc(stack->capacity * sizeof(int));

 if (!stack->array)

 return NULL;

 return stack;

}

int isEmpty(struct Stack* stack)

{

 return stack->top == -1;

}

char peek(struct Stack* stack)

{

 return stack->array[stack->top];

}

char pop(struct Stack* stack)

{

 if (!isEmpty(stack))

 return stack->array[stack->top--];

 return '$';

}

void push(struct Stack* stack, char op)

{

 stack->array[++stack->top] = op;

}

// The main function that returns value

// of a given postfix expression

int evaluatePostfix(char* exp)

{

 // Create a stack of capacity equal to expression size

 struct Stack* stack = createStack(strlen(exp));

 int i;

 // See if stack was created successfully

 if (!stack)

 return -1;

 // Scan all characters one by one

 for (i = 0; exp[i]; ++i) {

 // If the scanned character is an operand

 // (number here), push it to the stack.

 if (isdigit(exp[i]))

 push(stack, exp[i] - '0');

 // If the scanned character is an operator,

 // pop two elements from stack apply the operator

 else {

 int val1 = pop(stack);

 int val2 = pop(stack);

 switch (exp[i]) {

 case '+':

 push(stack, val2 + val1);

 break;

 case '-':

 push(stack, val2 - val1);

 break;

 case '*':

 push(stack, val2 * val1);

 break;

 case '/':

 push(stack, val2 / val1);

 break;

 }

 }

 }

 return pop(stack);

}

// Driver code

int main()

{

 char exp[] = "231*+9-";

 // Function call

 printf("postfix evaluation: %d", evaluatePostfix(exp));

 return 0;

}

Output
postfix evaluation: -4

Time Complexity: O(N)

Auxiliary Space: O(N)

There are the following limitations of the above implementation.

 It supports only 4 binary operators ‘+’, ‘*’, ‘-‘ and ‘/’. It can be extended for more operators

by adding more switch cases.

 The allowed operands are only single-digit operands.

Postfix evaluation for multi-digit numbers:

The above program can be extended for multiple digits by adding a separator-like space between

all elements (operators and operands) of the given expression.

Below given is the extended program which allows operands to have multiple digits.

// C program to evaluate value of a postfix

// expression having multiple digit operands

#include <ctype.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// Stack type

struct Stack {

 int top;

 unsigned capacity;

 int* array;

};

// Stack Operations

struct Stack* createStack(unsigned capacity)

{

 struct Stack* stack

 = (struct Stack*)malloc(sizeof(struct Stack));

 if (!stack)

 return NULL;

 stack->top = -1;

 stack->capacity = capacity;

 stack->array

 = (int*)malloc(stack->capacity * sizeof(int));

 if (!stack->array)

 return NULL;

 return stack;

}

int isEmpty(struct Stack* stack)

{

 return stack->top == -1;

}

int peek(struct Stack* stack)

{

 return stack->array[stack->top];

}

int pop(struct Stack* stack)

{

 if (!isEmpty(stack))

 return stack->array[stack->top--];

 return '$';

}

void push(struct Stack* stack, int op)

{

 stack->array[++stack->top] = op;

}

// The main function that returns value

// of a given postfix expression

int evaluatePostfix(char* exp)

{

 // Create a stack of capacity equal to expression size

 struct Stack* stack = createStack(strlen(exp));

 int i;

 // See if stack was created successfully

 if (!stack)

 return -1;

 // Scan all characters one by one

 for (i = 0; exp[i]; ++i) {

 // if the character is blank space then continue

 if (exp[i] == ' ')

 continue;

 // If the scanned character is an

 // operand (number here),extract the full number

 // Push it to the stack.

 else if (isdigit(exp[i])) {

 int num = 0;

 // extract full number

 while (isdigit(exp[i])) {

 num = num * 10 + (int)(exp[i] - '0');

 i++;

 }

 i--;

 // push the element in the stack

 push(stack, num);

 }

 // If the scanned character is an operator, pop two

 // elements from stack apply the operator

 else {

 int val1 = pop(stack);

 int val2 = pop(stack);

 switch (exp[i]) {

 case '+':

 push(stack, val2 + val1);

 break;

 case '-':

 push(stack, val2 - val1);

 break;

 case '*':

 push(stack, val2 * val1);

 break;

 case '/':

 push(stack, val2 / val1);

 break;

 }

 }

 }

 return pop(stack);

}

// Driver program to test above functions

int main()

{

 char exp[] = "100 200 + 2 / 5 * 7 +";

 // Function call

 printf("%d", evaluatePostfix(exp));

 return 0;

}

// This code is contributed by Arnab Kundu

Output
757

Time Complexity: O(N)

Auxiliary Space: O(N)

