
SNS COLLEGE OF TECHNOLOGY

 (An Autonomous Institution)

COIMBATORE- 641 035

Department of Computer Science and Engineering

23ITT101 - PROGRAMMING IN C AND DATA STRUCTURES

UNIT IV STACK AND QUEUE

Evaluation of Postfix Expression

Postfix expression: The expression of the form “a b operator” (ab+) i.e., when a pair of

operands is followed by an operator.

Examples:

Input: str = “2 3 1 * + 9 -“

Output: -4

Explanation: If the expression is converted into an infix expression, it will be 2 + (3 * 1) – 9 = 5

– 9 = -4.

Input: str = “100 200 + 2 / 5 * 7 +”

Output: 757

Evaluation of Postfix Expression using Stack:

To evaluate a postfix expression we can use a stack.

Iterate the expression from left to right and keep on storing the operands into a stack. Once an

operator is received, pop the two topmost elements and evaluate them and push the result in the

stack again.

Illustration:
Follow the below illustration for a better understanding:

Consider the expression: exp = “2 3 1 * + 9 -“

 Scan 2, it’s a number, So push it into stack. Stack contains ‘2’.

https://www.geeksforgeeks.org/introduction-to-stack-data-structure-and-algorithm-tutorials/

Push 2 into stack

 Scan 3, again a number, push it to stack, stack now contains ‘2 3’ (from bottom to top)

Push 3 into stack

 Scan 1, again a number, push it to stack, stack now contains ‘2 3 1’

Push 1 into stack

 Scan *, it’s an operator. Pop two operands from stack, apply the * operator on operands. We

get 3*1 which results in 3. We push the result 3 to stack. The stack now becomes ‘2 3’.

Evaluate * operator and push result in stack

 Scan +, it’s an operator. Pop two operands from stack, apply the + operator on operands.

We get 3 + 2 which results in 5. We push the result 5 to stack. The stack now becomes ‘5’.

Evaluate + operator and push result in stack

 Scan 9, it’s a number. So we push it to the stack. The stack now becomes ‘5 9’.

Push 9 into stack

 Scan -, it’s an operator, pop two operands from stack, apply the – operator on operands, we

get 5 – 9 which results in -4. We push the result -4 to the stack. The stack now becomes ‘-4’.

Evaluate ‘-‘ operator and push result in stack

 There are no more elements to scan, we return the top element from the stack (which is the

only element left in a stack).

So the result becomes -4.

Follow the steps mentioned below to evaluate postfix expression using stack:

 Create a stack to store operands (or values).

 Scan the given expression from left to right and do the following for every scanned element.

 If the element is a number, push it into the stack.

 If the element is an operator, pop operands for the operator from the stack.

Evaluate the operator and push the result back to the stack.

 When the expression is ended, the number in the stack is the final answer.

Example 1:

Input: S = "231*+9-"

Output: -4

Example 2:

Input: S = "123+*8-"

Output: -3

Example 3:

Input: S = 53+62/35+

Output: 68

Example 4:

Input: S = 10 5 60 6 / * 8 -

Output: 142

Example 5:

Input: S = 5 4 6 * 4 9 3 *

Output: 350

Below is the implementation of the above approach:

// C program to evaluate value of a postfix expression

#include <ctype.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// Stack type

struct Stack {

 int top;

 unsigned capacity;

 int* array;

};

// Stack Operations

struct Stack* createStack(unsigned capacity)

{

 struct Stack* stack

 = (struct Stack*)malloc(sizeof(struct Stack));

 if (!stack)

 return NULL;

 stack->top = -1;

 stack->capacity = capacity;

 stack->array

 = (int*)malloc(stack->capacity * sizeof(int));

 if (!stack->array)

 return NULL;

 return stack;

}

int isEmpty(struct Stack* stack)

{

 return stack->top == -1;

}

char peek(struct Stack* stack)

{

 return stack->array[stack->top];

}

char pop(struct Stack* stack)

{

 if (!isEmpty(stack))

 return stack->array[stack->top--];

 return '$';

}

void push(struct Stack* stack, char op)

{

 stack->array[++stack->top] = op;

}

// The main function that returns value

// of a given postfix expression

int evaluatePostfix(char* exp)

{

 // Create a stack of capacity equal to expression size

 struct Stack* stack = createStack(strlen(exp));

 int i;

 // See if stack was created successfully

 if (!stack)

 return -1;

 // Scan all characters one by one

 for (i = 0; exp[i]; ++i) {

 // If the scanned character is an operand

 // (number here), push it to the stack.

 if (isdigit(exp[i]))

 push(stack, exp[i] - '0');

 // If the scanned character is an operator,

 // pop two elements from stack apply the operator

 else {

 int val1 = pop(stack);

 int val2 = pop(stack);

 switch (exp[i]) {

 case '+':

 push(stack, val2 + val1);

 break;

 case '-':

 push(stack, val2 - val1);

 break;

 case '*':

 push(stack, val2 * val1);

 break;

 case '/':

 push(stack, val2 / val1);

 break;

 }

 }

 }

 return pop(stack);

}

// Driver code

int main()

{

 char exp[] = "231*+9-";

 // Function call

 printf("postfix evaluation: %d", evaluatePostfix(exp));

 return 0;

}

Output
postfix evaluation: -4

Time Complexity: O(N)

Auxiliary Space: O(N)

There are the following limitations of the above implementation.

 It supports only 4 binary operators ‘+’, ‘*’, ‘-‘ and ‘/’. It can be extended for more operators

by adding more switch cases.

 The allowed operands are only single-digit operands.

Postfix evaluation for multi-digit numbers:

The above program can be extended for multiple digits by adding a separator-like space between

all elements (operators and operands) of the given expression.

Below given is the extended program which allows operands to have multiple digits.

// C program to evaluate value of a postfix

// expression having multiple digit operands

#include <ctype.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// Stack type

struct Stack {

 int top;

 unsigned capacity;

 int* array;

};

// Stack Operations

struct Stack* createStack(unsigned capacity)

{

 struct Stack* stack

 = (struct Stack*)malloc(sizeof(struct Stack));

 if (!stack)

 return NULL;

 stack->top = -1;

 stack->capacity = capacity;

 stack->array

 = (int*)malloc(stack->capacity * sizeof(int));

 if (!stack->array)

 return NULL;

 return stack;

}

int isEmpty(struct Stack* stack)

{

 return stack->top == -1;

}

int peek(struct Stack* stack)

{

 return stack->array[stack->top];

}

int pop(struct Stack* stack)

{

 if (!isEmpty(stack))

 return stack->array[stack->top--];

 return '$';

}

void push(struct Stack* stack, int op)

{

 stack->array[++stack->top] = op;

}

// The main function that returns value

// of a given postfix expression

int evaluatePostfix(char* exp)

{

 // Create a stack of capacity equal to expression size

 struct Stack* stack = createStack(strlen(exp));

 int i;

 // See if stack was created successfully

 if (!stack)

 return -1;

 // Scan all characters one by one

 for (i = 0; exp[i]; ++i) {

 // if the character is blank space then continue

 if (exp[i] == ' ')

 continue;

 // If the scanned character is an

 // operand (number here),extract the full number

 // Push it to the stack.

 else if (isdigit(exp[i])) {

 int num = 0;

 // extract full number

 while (isdigit(exp[i])) {

 num = num * 10 + (int)(exp[i] - '0');

 i++;

 }

 i--;

 // push the element in the stack

 push(stack, num);

 }

 // If the scanned character is an operator, pop two

 // elements from stack apply the operator

 else {

 int val1 = pop(stack);

 int val2 = pop(stack);

 switch (exp[i]) {

 case '+':

 push(stack, val2 + val1);

 break;

 case '-':

 push(stack, val2 - val1);

 break;

 case '*':

 push(stack, val2 * val1);

 break;

 case '/':

 push(stack, val2 / val1);

 break;

 }

 }

 }

 return pop(stack);

}

// Driver program to test above functions

int main()

{

 char exp[] = "100 200 + 2 / 5 * 7 +";

 // Function call

 printf("%d", evaluatePostfix(exp));

 return 0;

}

// This code is contributed by Arnab Kundu

Output
757

Time Complexity: O(N)

Auxiliary Space: O(N)

