Fundamentals of the Analysis of Algorithm Efficiency

- Analysis Framework
- Asymptotic Notations and its properties
- <u>Mathematical analysis of Non Recursive algorithms</u>
- Mathematical analysis of Recursive algorithms

Mathematical analysis of Non - Recursive algorithms

- Analysis framework systematic analyze the time efficiency of non-recursive algorithm
- Example 1: Finding the largest value in a list of n numbers

```
ALGORITHM MaxElement(A[0..n-1])
    //Determines the value of the largest element in a given array
    //Input: An array A[0..n-1] of real numbers
    //Output: The value of the largest element in A
    maxval \leftarrow A[0]
    for i \leftarrow 1 to n - 1 do
                                                                               Second max
        if A[i] > maxval
                                              A[i] = A[1]
            maxval \leftarrow A[i]
    return maxval
                                                                                   38
                                                  2
                                                        3
                                                                   6
                                                                              75
                                                                                           3
                                                                                                2
                                                                         6
                                                             8
```

maxval

*

Max

Example 1: Finding the largest value in a list of n numbers

 $maxval \leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do
if A[i] > maxval $maxval \leftarrow A[i]$ return maxval

1	What is the problem size	n	
2	What is the basic operation	Comparison in for loop	
3	Count of basic operation	$C(n) = \sum_{i=1}^{n-1} 1 = n-1 \epsilon \Theta(n)$	
4	Depends on what efficiency? Worst/best/average		

*

3

General Plan for Analyzing the Time Efficiency of Non recursive Algorithms

- 1. Decide on a parameter (or parameters) indicating an input's size.
- 2. Identify the algorithm's **basic operation.** (As a rule, it is located in the inner- most loop.)
- 3. Check whether the **number of times the basic operation is executed** depends only on the size of an input. If it also depends on some additional property, the **worst-case, average-case, and, if necessary, best-case efficiencies** have to be investigated separately.
- **4.** Set up a sum expressing the number of times the algorithm's basic operation is executed.
- 5. Using **standard formulas** and rules of sum manipulation, either find a closed-form formula for the count or, at the very least, establish its order of growth.

Formula for Sum Manipulation

$$\sum_{i=l}^{u} ca_{i} = c \sum_{i=l}^{u} a_{i},$$
(R1)
$$\sum_{i=l}^{u} (a_{i} \pm b_{i}) = \sum_{i=l}^{u} a_{i} \pm \sum_{i=l}^{u} b_{i},$$
(R2)

two summation formulas

$$\sum_{i=l}^{n} 1 = u - l + 1 \quad \text{where } l \le u \text{ are some lower and upper integer limits, (S1)}$$
$$\sum_{i=0}^{n} i = \sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2 \in \Theta(n^2).$$
(S2)

Example 2: Element Uniqueness Problem

10	20	30	40	30	50	60
1 st	2 nd	3 rd	4 th	5 th	6 th	7 th
A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]

Here: n=7, n-1 = 6, n-2=5

```
ALGORITHM UniqueElements(A[0..n - 1])
```

```
//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i \leftarrow 0 to n - 2 do

for j \leftarrow i + 1 to n - 1 do

if A[i] = A[j] return false

return true
```

Example 2: Element Uniqueness Problem

1	What is the problem size	n		
2	What is the basic operation	if statement (comparison)		
3	Count of basic operation	$\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$		
4	Depends on what efficiency? Worst/best/average <i>Worst case</i> – all the elements are different – all sequence of for loop <i>Best case</i> – 1^{st} and 2^{nd} element are same – comes out of loop			
	Summation			
5	Summation			
5	$C_{worral}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 =$	$\sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i)$ $\sum_{i=0}^{n-2} i = (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2}$ 7		

Example 3: Sum of n numbers

Program:

Example:

- *n* = 5. count =0
- i=1 \Box count =0+1 = 1
- i=2 \Box count = 1+2 = 3
- i=3 \Box count = 3+3 = 6
- i=4 \Box count = 6+4 = 10
- $i=5 \square count = 10+5 = 15$

Analysis of sum of n numbers:

1.Problem size?2.Basic Operation ?3.Count of basic operation ?4.Worst / Best / Average case efficiency ?

Example 4: to find the no of binary digits in a binary representation of a positive decimal integer

2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰		Number	Binary representation
32	16	8	4	2	1		0	0000
					1	<	1	0001
				1	0		2	0010
				1	1	*	3	0011
	1	0	0	0	0		4	0100
ALGORITHM Binary(n)						I	5	0101
//Input: A positive decimal integer n //Output: The number of binary digits in n's binary represe						ntation	6	0110
$count \leftarrow 1$ while $n > 1$ do							15	1111
$count \leftarrow count + 1$ $n \leftarrow \lfloor n/2 \rfloor$						16	10000	
return	return count							

Iteration	n value	Count
Initial	2	1
1 st		2
	n = n/2 = 1	

Iteration	n value	Count
Initial	3	1
1 st		2
	n = n/2 = 1.5	

Iteration	n value	Count
Initial	4	1
1 st		2
	n=4/2=2	
2 nd		3
	n=2/2=1	

Iteration	n value	Count
Initial	8	1
1 st		2
	n=8/2=4	
2 nd		3
	n=4/2=2	
3 rd		4
	n=2/2=1	

Example 4: Analysis

1	What is the problem size	n		
2	What is the basic operation	Comparison in while loop		
3	Count of basic operation	$C(n) = \sum_{i=1}^{\lg(n)+1} 1$		
4	Depends on what efficiency? Worst/best/average			

Example 5: Matrix Multiplication

ALGORITHM *MatrixMultiplication*(A[0..n - 1, 0..n - 1],

B[0..n-1, 0..n-1])

//Multiplies two square matrices of order n by the definition-based algorithm

```
//Input: Two n \times n matrices A and B
```

```
//Output: Matrix C = AB
```

```
for i \leftarrow 0 to n - 1 do
for j \leftarrow 0 to n - 1 do
C[i, j] \leftarrow 0.0
for k \leftarrow 0 to n - 1 do
C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]
```

return C

Example 5: Matrix Multiplication Analysis

1	What is the problem size	Order of matrix	
2	What is the basic operation	Multiplication and addition	
3	Count of basic operation	$M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1.$	
4	Depends on what efficiency? Worst/best/average		
5	Running time T(n) = Cop C(n) = Cm M(n) + Ca A(n) = Cm n^3 + Ca n^3 = (Cm+Cn) n 3		

Write the program for the following output and do the analysis process