

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.

An Autonomous Institution

COURSE NAME: 23CSE201 OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT-I OVERVIEW AND PROCESS MANAGEMENT

Topic: Architecture, Operations

Dr.B. Vinodhini
Associate Professor
Department of Computer Science and Engineering

SNS COLLEGE OF TECHNOLOGY

(Autonomous) COIMBATORE-35

Operating Systems

Introduction-Storage Structure

 Main Memory(RAM) implemented in Semi Conductor Technology(DRAM)

• Interaction is achieved through *Load or Store*

instructions

I/O Structure

- After I/O starts, control returns to user program only upon I/O completion
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access)
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing
- After I/O starts, control returns to user program without waiting for I/O completion
 - System call request to the operating system to allow user to wait for I/O completion
 - Device-status table contains entry for each I/O device indicating its type, address, and state
 - Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt

Directory Memory Access

- Used for high-speed I/O devices able to transmit information at close to memory speeds
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention
- Only one interrupt is generated per block, rather than the one interrupt per byte

Storage Structure

- Main memory only large storage media that the CPU can access directly
 - Random access
 - Typically volatile
- Secondary storage extension of main memory that provides large nonvolatile storage capacity
- Magnetic disks rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors
 - The disk controller determines the logical interaction between the device and the computer

Storage Hierarchy

- Storage systems organized in hierarchy
 - Speed
 - Cost
 - Volatility

 Caching – copying information into faster storage system; main memory can be viewed as a cache for secondary storage

Introduction-User View

Computer System Architecture Based on the no. of gen. purpose processors used we have 3 types of computer system -# Single Processor System * Multi Processor System * Clustered System

Introduction

Multiprocessor System - Tightly Coupled Parallel System. 1. Increased throughput Advantage 2. Inexpensive, comparatively. 3. Increased reliability.

Graceful degnadation. => Catas	
	there.
Speed a surriving	
Speed & surriving components.	
ex: Touden System (HP NI	en System)
n processors - duplicate	4 -
2n' => each	James took

Computer System Architecture Clustered Systems

Computer System Architecture

Clustered Systems Asymmetric Clustering Symmetric Clustering Fet Standby Parallelization

Operating System Structure

- Multiprogramming needed for efficiency
 - Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - When it has to wait (for I/O for example), OS switches to another job
- Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - Response time should be < 1 second
 - Each user has at least one program executing in memory ⇒process
 - If several jobs ready to run at the same time ⇒ CPU scheduling
 - If processes don't fit in memory, swapping moves them in and out to run
 - Virtual memory allows execution of processes not completely in memory

Operating System Architecture Multiprogramming

Operating System Architecture Multiprogramming

Operating System
Job 1
Job 2
0
Job n
Empty Space

Operating System Architecture Time Sharing Systems

Operating System Operation Dual Mode Operation

Operating System Operation Dual Mode Operation

Computing Environment

Computing Environment

Summarization