
19CSB303 & COMPOSING MOBILE APPS

Dr.S.R.JANANI, AP/CSE Page 1

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE – 35

DEPARTMENT OF COMPUTER SIENCE AND ENGINEERING

UNIT 1

GETTING STARTED WITH MOBILITY

Syllabus:

Mobility landscape, Mobile platforms, Mobile apps development, Overview of Android

platform, setting up the mobile app development environment along with an emulator, a case

study on Mobile app development.

Projects Overview

1. Modules

2. Project Files

3. Project Structure Settings

A project in Android Studio contains everything that defines your workspace for an app, from source

code and assets, to test code and build configurations. When you start a new project, Android Studio

creates the necessary structure for all your files and makes them visible in theProject window on the left

side of the IDE (click View > Tool Windows > Project). This page provides an overview of the key

components inside your project.

Modules

A module is a collection of source files and build settings that allow you to divide your project into

discrete units of functionality. Your project can have one or many modules and one module may use

another module as a dependency. Each module can be independently built, tested, and debugged.

You can add a new module to your project by clicking File > New > New Module.

Android Studio offers a few distinct types of module:

Android app module

https://developer.android.com/studio/projects/index.html#ApplicationModules
https://developer.android.com/studio/projects/index.html#ProjectFiles
https://developer.android.com/studio/projects/index.html#ProjectStructure

19CSB303 & COMPOSING MOBILE APPS

Dr.S.R.JANANI, AP/CSE Page 2

Provides a container for your app's source code, resource files, and app level settings such as the

module-level build file and Android Manifest file. When you create a new project, the default module

name is "app".

In the Create New Module window, Android Studio offers the following app modules:

 Phone & Tablet Module

 Android Wear Module

 Android TV Module

 Glass Module

They each provide essential files and some code templates that are appropriate for the corresponding

app or device type.

Library module

Provides a container for your reusable code, which you can use as a dependency in other app modules

or import into other projects. Structurally, a library module is the same as an app module, but when

built, it creates a code archive file instead of an APK, so it can't be installed on a device.

In the Create New Module window, Android Studio offers the following library modules:

 Android Library: This type of library can contain all file types supported in an Android project,

including source code, resources, and manifest files. The build result is an Android Archive (AAR)

file that you can add as a dependency for your Android app modules.

 Java Library: This type of library can contain only Java source files. The build result is an Java

Archive (JAR) file that you can add as a dependency for your Andriod app modules or other Java

projects.

Google Cloud module

Provides a container for your Google Cloud backend code. This module adds the required code and

dependencies for a Java App Engine backend that uses simple HTTP, Cloud Endpoints, and Cloud

Messaging to connect to your app. You can develop your backend to provide cloud services your app

needs.

Using Android Studio to create and develop your Google Cloud module lets you manage app code and

backend code in the same project. You can also run and test your backend code locally, and use Android

Studio to deploy your Google Cloud module.

19CSB303 & COMPOSING MOBILE APPS

Dr.S.R.JANANI, AP/CSE Page 3

dependencies {

 compile project(':my-library-module')

}

Project Files

By default, Android Studio displays your project files in the Android view. This view does not reflect the

actual file hierarchy on disk, but is organized by modules and file types to simplify navigation between

key source files of your project, hiding certain files or directories that are not commonly used. Some of

the structural changes compared to the structure on disk include the following:

 Shows all the project's build-related configuration files in a top-level Gradle Script group.

 Shows all manifest files for each module in a module-level group (when you have different

manifest files for different product flavors and build types).

19CSB303 & COMPOSING MOBILE APPS

Dr.S.R.JANANI, AP/CSE Page 4

 Shows all alternative resource files in a single group, instead of in separate folders per resource

qualifier. For example, all density versions of your launcher icon are visible side-by-side.

Within each Android app module, files are shown in the following groups:

manifests

Contains the AndroidManifest.xml file.

java

Contains the Java source code files, separated by package names, including JUnit test code.

res

Contains all non-code resources, such as XML layouts, UI strings, and bitmap images, divided into

corresponding sub-directoriesThe Android Project View

https://developer.android.com/guide/topics/manifest/manifest-intro.html

19CSB303 & COMPOSING MOBILE APPS

Dr.S.R.JANANI, AP/CSE Page 5

To see the actual file structure of the project including all files hidden from the Android view,

select Projectfrom the dropdown at the top of the Project window.

19CSB303 & COMPOSING MOBILE APPS

Dr.S.R.JANANI, AP/CSE Page 6

When you select Project view, you can see a lot more files and directories. The most important of which

are the following:

module-name/

build/

Contains build outputs.

libs/

Contains private libraries.

src/

Contains all code and resource files for the module in the following subdirectories:

androidTest/

Contains code for instrumentation tests that run on an Android device. For more information, see

the Android Test documentation.

main/

Contains the "main" sourceset files: the Android code and resources shared by all build variants (files for

other build variants reside in sibling directories, such as src/debug/ for the debug build type).

AndroidManifest.xml

Describes the nature of the application and each of its components. For more information, see

the AndroidManifest.xmldocumentation.

java/

Contains Java code sources.

jni/

Contains native code using the Java Native Interface (JNI). gen/

Contains the Java files generated by Android Studio, such as your R.java file and interfaces created from

AIDL files.

res/

Contains application resources, such as drawable files, layout files, and UI string. assets/

https://developer.android.com/tools/testing/index.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html

19CSB303 & COMPOSING MOBILE APPS

Dr.S.R.JANANI, AP/CSE Page 7

Contains file that should be compiled into an .apk file as-is. You can navigate this directory in the same

way as a typical file system using URIs and read files as a stream of bytes using the AssetManager . For

example, this is a good location for textures and game data.

test/

Contains code for local tests that run on your host JVM.

build.gradle (module)

This defines the module-specific build configurations.

build.gradle (project)

This defines your build configuration that apply to all modules. This file is integral to the project, so you

should maintain them in revision control with all other source code.

Project Structure Settings

To change various settings for your Android Studio project, open the Project Structure dialog by

clicking File > Project Structure. It contains the following sections:

 SDK Location: Sets the location of the JDK, Android SDK, and Android NDK that your project

uses.

 Project: Sets the version for Gradle and the Android plugin for Gradle, and the repository

location name.

 Developer Services: Contains settings for Android Studio add-in components from Google or

other third parties. See Developer Services, below.

 Modules: Allows you to edit module-specific build configurations, including the target and

minimum SDK, the app signature, and library dependencies. See Modules, below.

Developer Services

The Developer Services section of the Project Structure dialog box contains configuration pages for

several services that you can be use with your app. This section contains the following pages:

 AdMob: Allows you to turn on Google's AdMob component, which helps you understand your

users and show them tailored advertisements.

 Analytics: Allows you to turn on Google Analytics, which helps you measure user interactions

with your app across various devices and environments.

https://developer.android.com/reference/android/content/res/AssetManager.html
https://developer.android.com/tools/building/plugin-for-gradle.html
https://developer.android.com/studio/projects/index.html#dev-svc
https://developer.android.com/studio/projects/index.html#modules
https://developers.google.com/admob/
https://developers.google.com/analytics/

19CSB303 & COMPOSING MOBILE APPS

Dr.S.R.JANANI, AP/CSE Page 8

 Authentication: Allows users to use Google Sign-In to sign in to your app with their Google

accounts.

 Cloud: Allows you to turn on Firebase cloud-based services for your app.

 Notifications: Allows you to use Google Cloud Messaging to communicate between your app

and your server.

Turning on any of these services may cause Android Studio to add necessary dependencies and

permissions to your app. Each configuration page lists these and other actions that Android Studio takes

if you enable the associated service.

Modules

The Modules settings section lets you change configuration options for each of your project's modules.

Each module's settings page is divided into the following tabs:

 Properties: Specifies the versions of the SDK and build tools to use to compile the module.

 Signing: Specifies the certificate to use to sign your APK.

 Flavors: Lets you create multiple build flavors, where each flavor specifies a set of configuration

settings, such as the module's minimum and target SDK version, and the version code and

version name. For example, you might define one flavor that has a minimum SDK of 15 and a

target SDK of 21, and another flavor that has a minimum SDK of 19 and a target SDK of 23.

 Build Types: Lets you create and modify build configurations, as described in Configuring Gradle

Builds. By default, every module has debug andrelease build types, but can define more as

needed.

 Dependencies: Lists the library, file, and module dependencies for this module. You can add,

modify, and delete dependencies from this pane

https://developers.google.com/identity/sign-in/android/
https://www.firebase.com/
https://developers.google.com/cloud-messaging/
https://developer.android.com/tools/publishing/app-signing.html#sign-auto
https://developer.android.com/tools/publishing/versioning.html
https://developer.android.com/tools/publishing/versioning.html
https://developer.android.com/tools/building/configuring-gradle.html
https://developer.android.com/tools/building/configuring-gradle.html

