

Machine Learning Platform Life-Cycle Management

Hope(Xinwei) Wang Software Engineer at Intuit

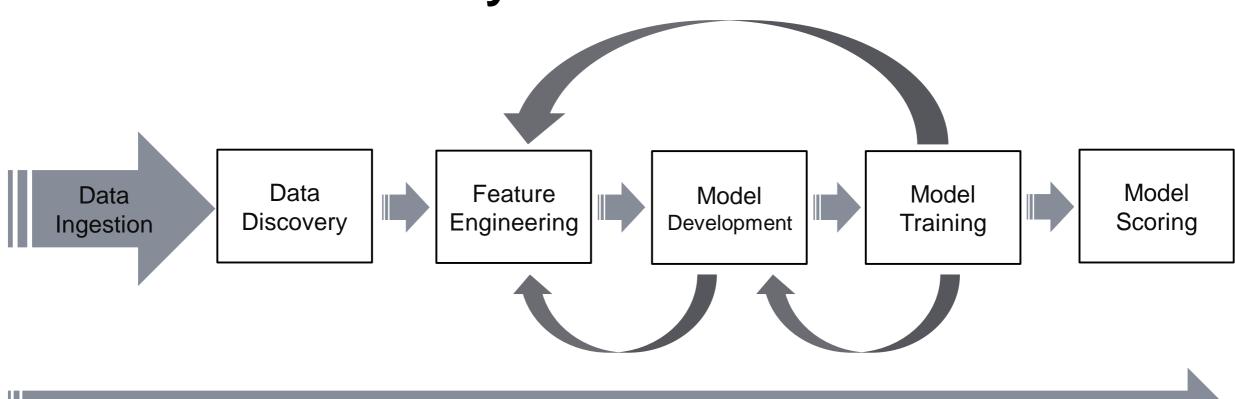
OVERVIEW

- What is a machine learning platform?
- What is the ML platform lifecycle?
- Why ML platform lifecycle management?
- Artifacts and their associations
- Use cases at Intuit

What is a Machine Learning Platform?

- Manages the entire lifecycle of an ML model
- Includes automating and accelerating the delivery of ML applications

ML Platform Life-Cycle

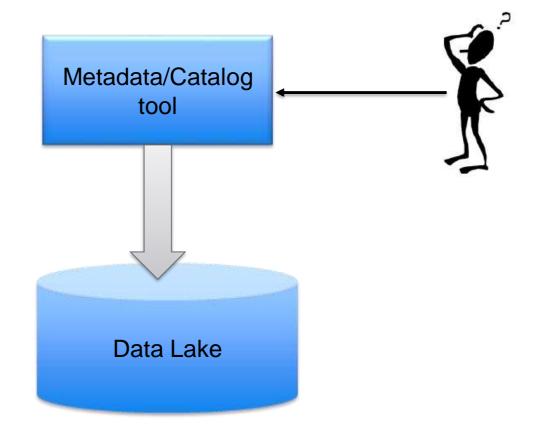


Life-Cycle Management

Data Discovery

Metadata/catalog tool

Accessible data source
 (Raw attributes & Data lineage)

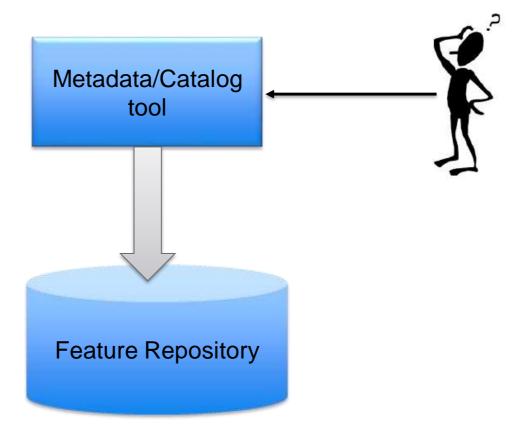


Feature Engineering

Output : features

Reproducible

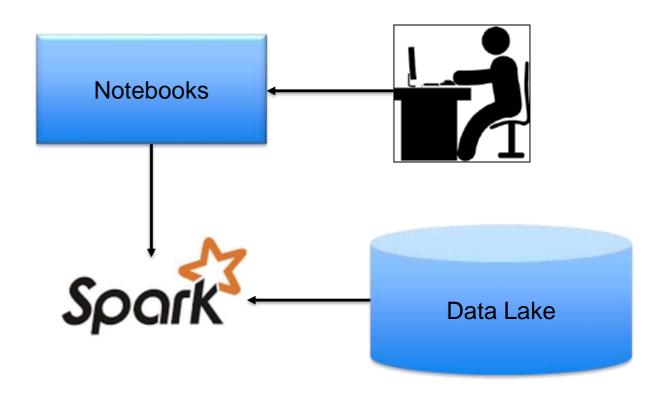
Reusable



Model Development

Collaborative environment

Access data lake



Model Training

Support ability for:

- Being triggered either manually/via automation
- Creation and management of training sets
- Re-training
- Optimizing hyper parameter tuning through parallelization of model training execution

Model Scoring

Support online/offline(depend on use cases)

Ability to be triggered either manually/via automation

Big Mess!

- No central artifact management solution
- Hard to reuse existing features/data/algorithms/toolings
- Inability to scale for large datasets
- Lack of automation/orchestration across the ML life-cycle
- Lack of rigor/discipline in the ML development life-cycle
- Slow down delivery of Machine Learning applications

Ideal Status

- Optimizing data scientists' engineering process
- Tie ML components together into a cohesive platform, support the life-cycle of ML artifacts end-to-end
- Increase efficiency of delivering ML predictions at scale

Artifact Management

Data Artifacts

- Features
- Training sets

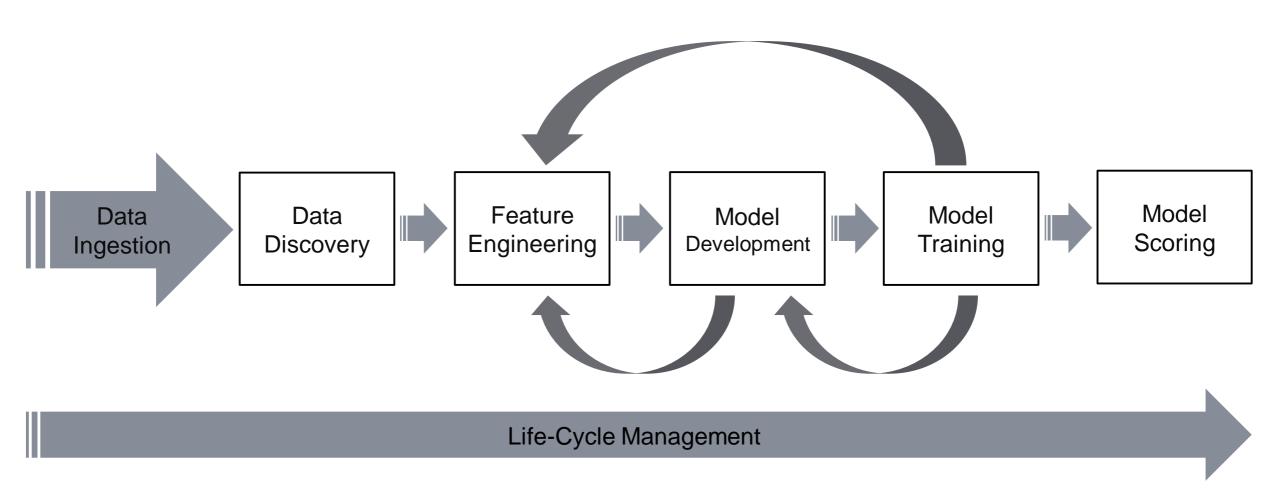
Model Artifacts

- Model code
- Trained models
- Performance metrics
- Hyper parameter values

Environment Artifacts

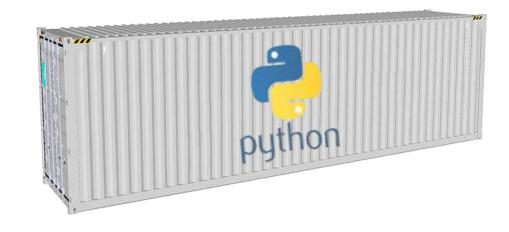
- Languages & language versions
- Packages & Package versions

Machine Learning Platform Life-Cycle Management



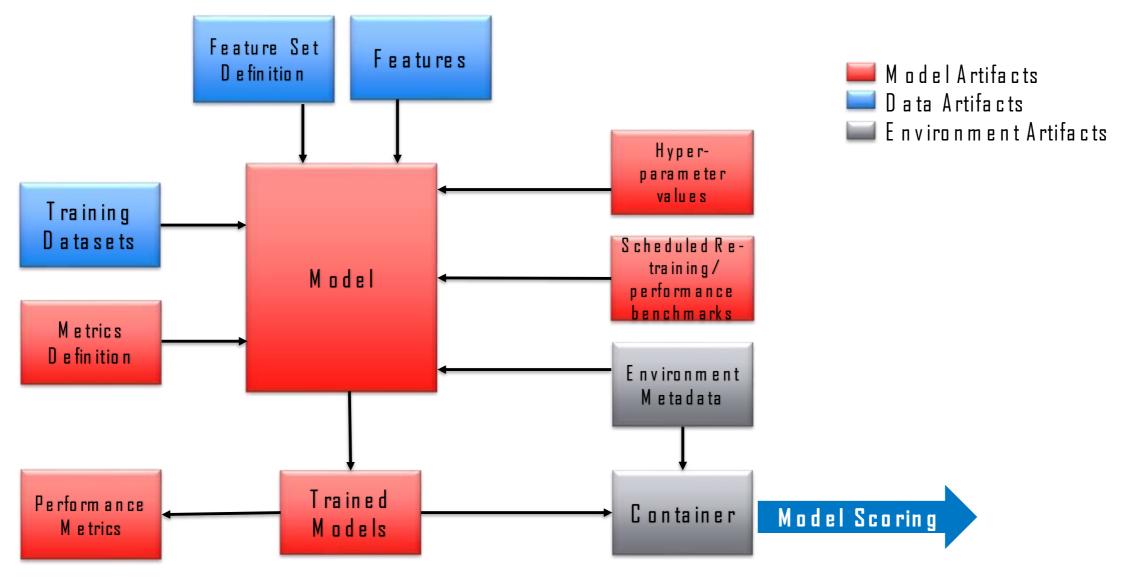
CONTAINERIZATION!

Benefit Of Containerization



- Flexibility: Model has specific environment
- Consistency: Model has same behavior throughout the lifecycle

Machine Learning Platform Life-Cycle Management



Model Code

Developed in notebooks

Multiple versions

Each version associate with an externalized environment artifact

Environment Artifacts

- Environment must be consistent for development, training, scoring
- Externalized as metadata
- Model/Execution environments constructed from metadata and deployed into containers (Docker, Yarn, Conda, etc.)

Examples of containers/virtual environments

- Tailored to the environment (built based on externalized environment metadata)
- Used for model development, training, execution

Container/virtual environment	Usage
Docker container	 Model development Model training Online scoring
Yarn container	On Spark cluster • Distributed training • Batch offline scoring
Conda environment	Model development

Features

Used as data input of the model

Stored in discoverable feature repository

Metadata defines the model specific feature-sets

Trained Models

Serialized, weighted model files

Associate with a version of model code and training set

Training Sets

Datasets used to train, validate and test the model

Associated to a trained model

Feature Set Definitions

Define what feature sets this model requires

Hyper Parameter Values

Set up values before learning process

Model specific

Metric Definition

 Defines the metrics to collect and thresholds to evaluate models against.

Performance Metrics

Metrics to evaluate model effectiveness

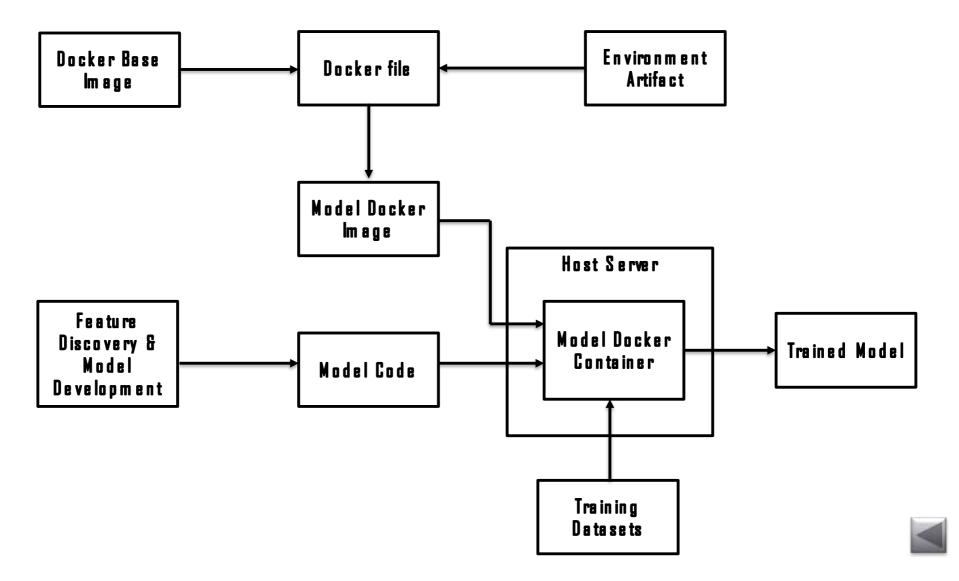
Model metrics including: ROC curve, confusion matrix, F1 score, precision, recall, etc.

Scheduled Re-training & performance benchmarks

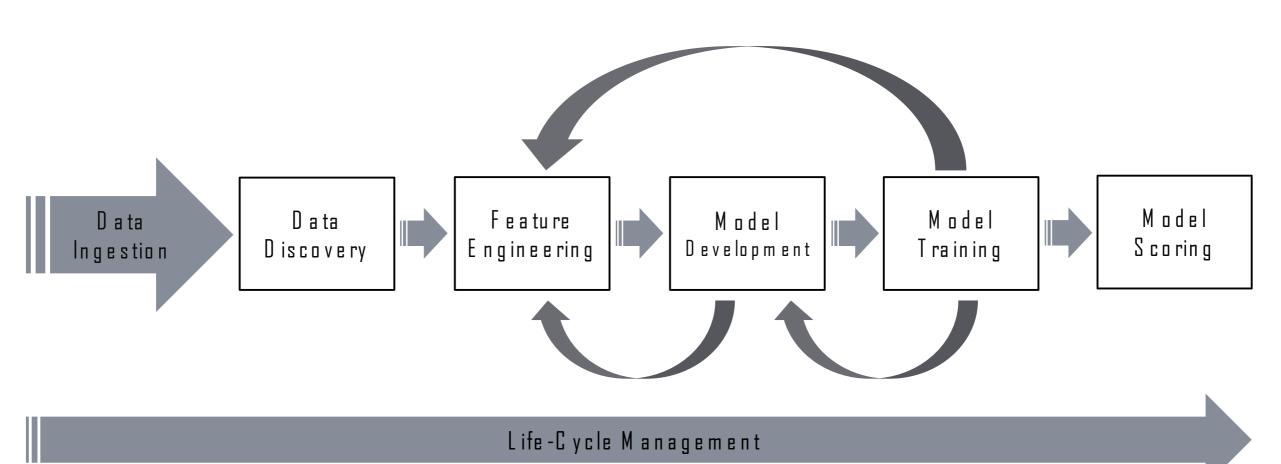
 To automate the re-training and deployment of updated models

Model specific

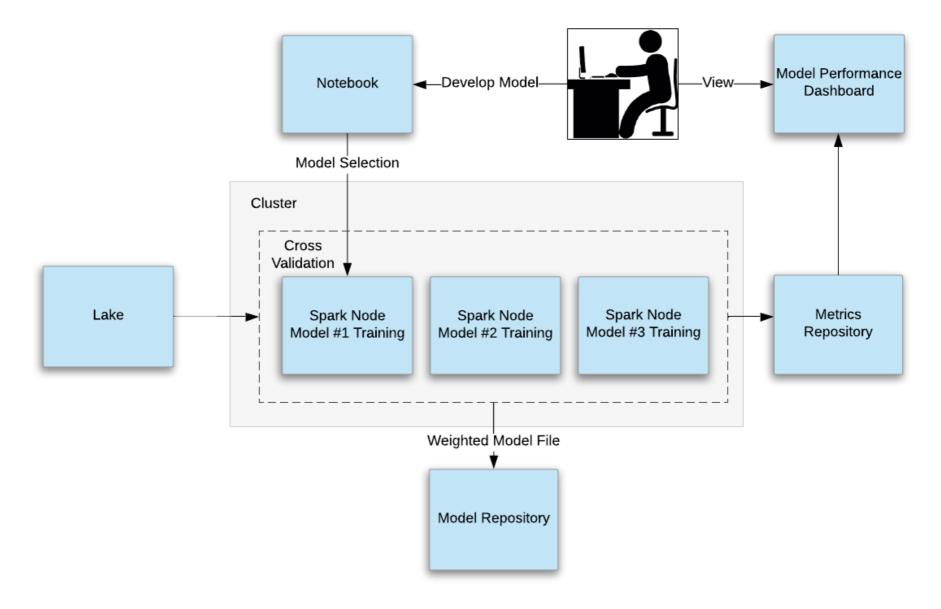
Model Training in Docker Container



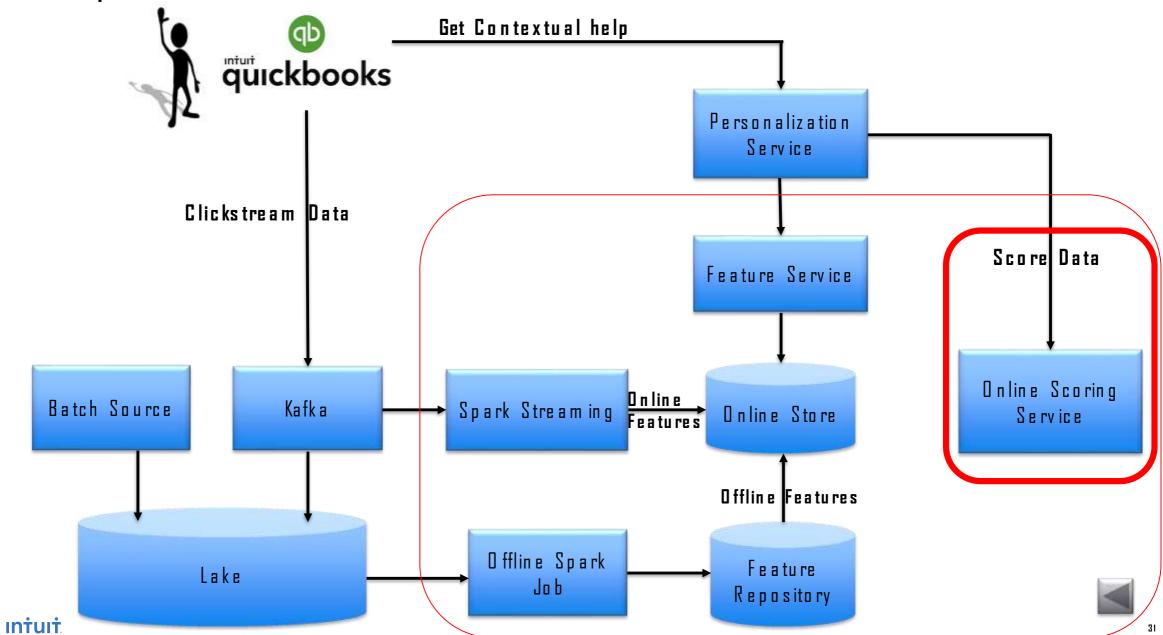
Machine Learning Platform Life-Cycle Management



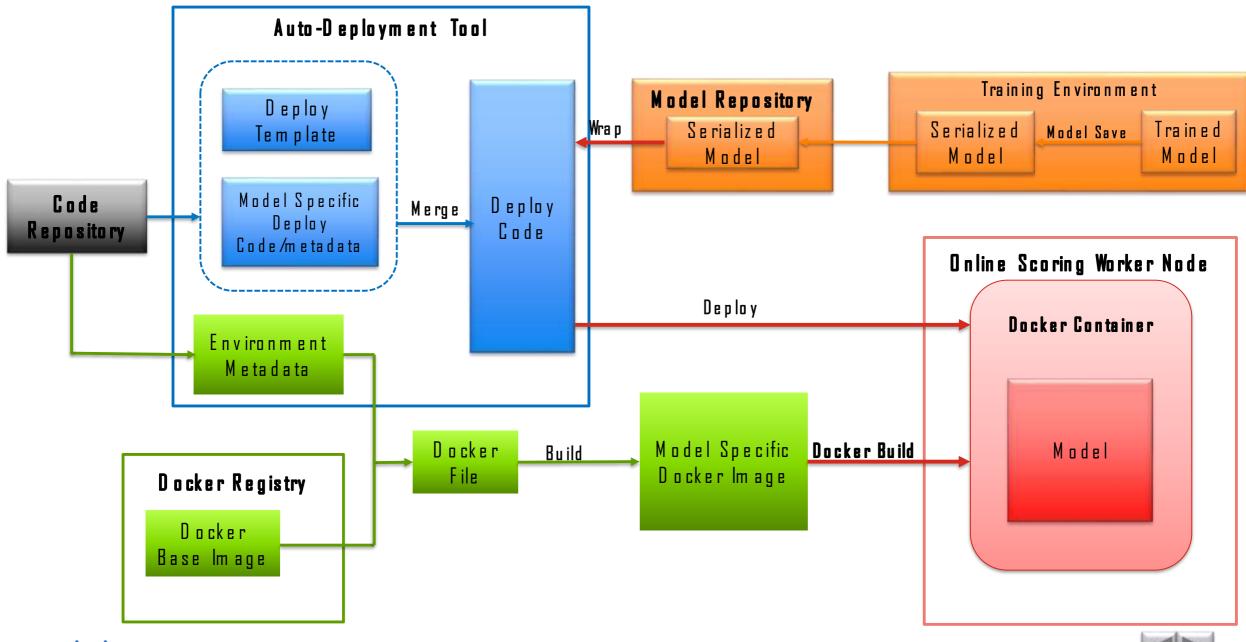
Model Development & Training & Tuning



Self-help Service in Quickbooks

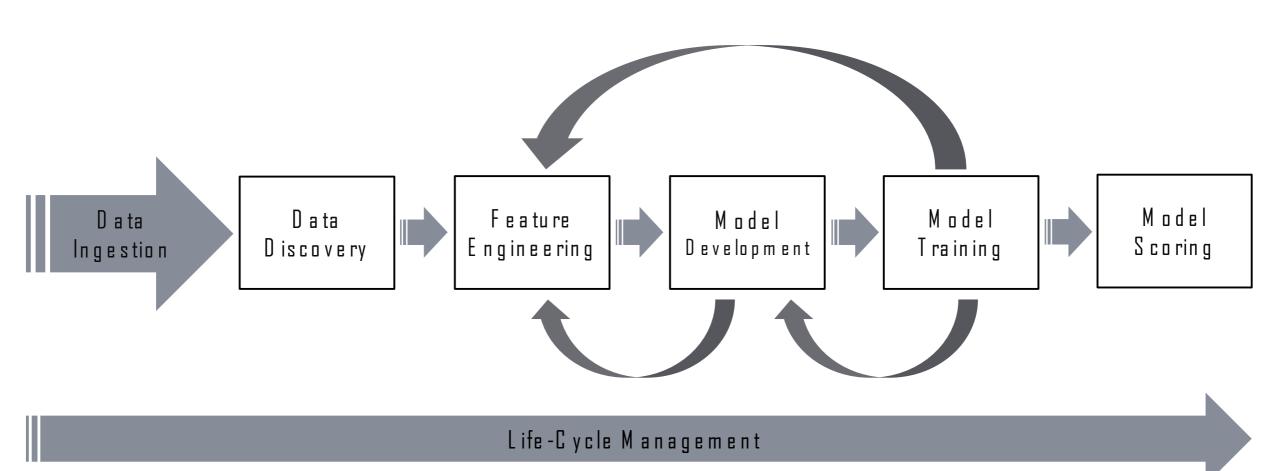


Example: Online Scoring Service Deployment Diagram

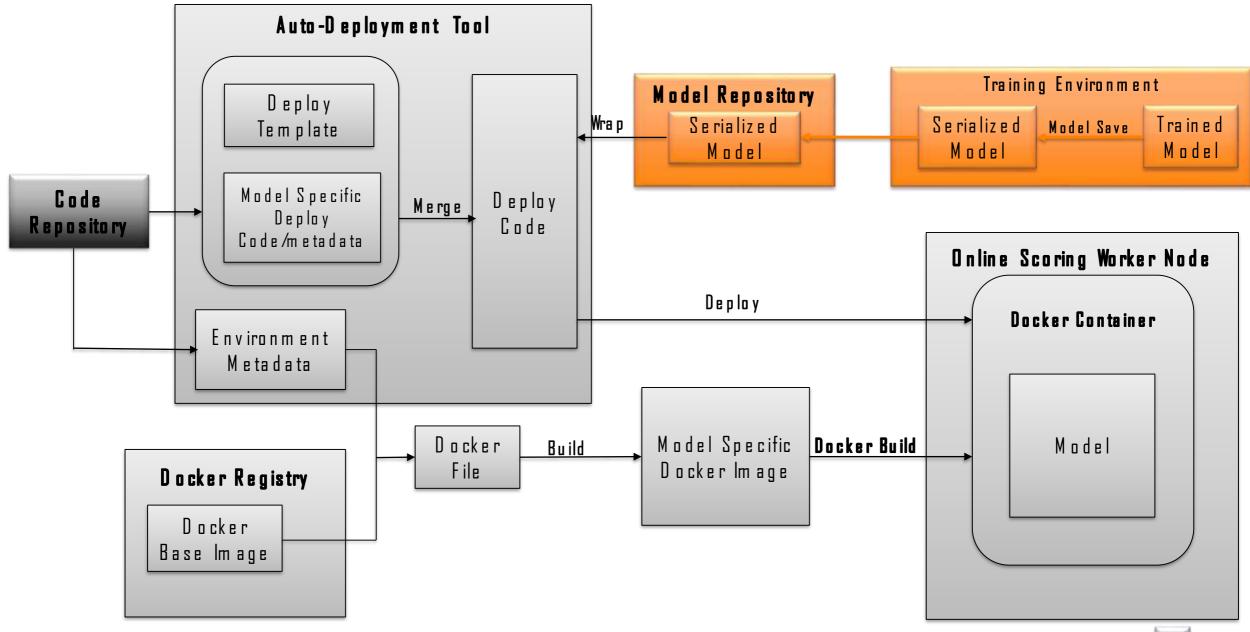


ıntuıt

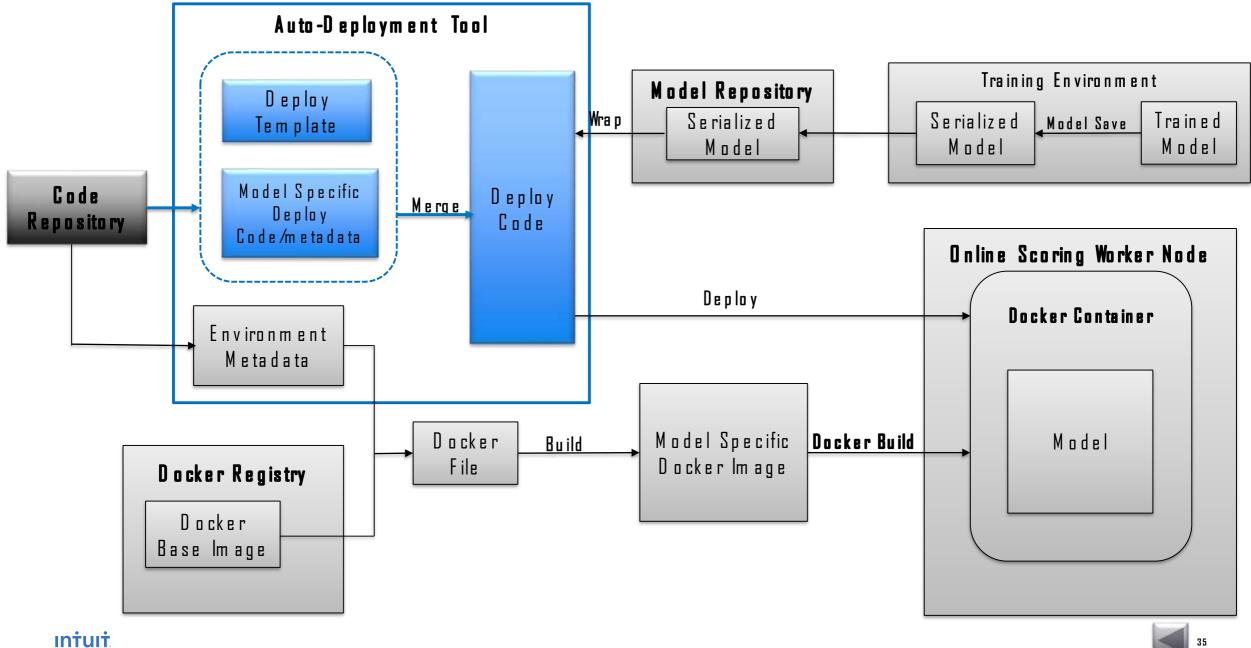
Machine Learning Platform Life-Cycle Management



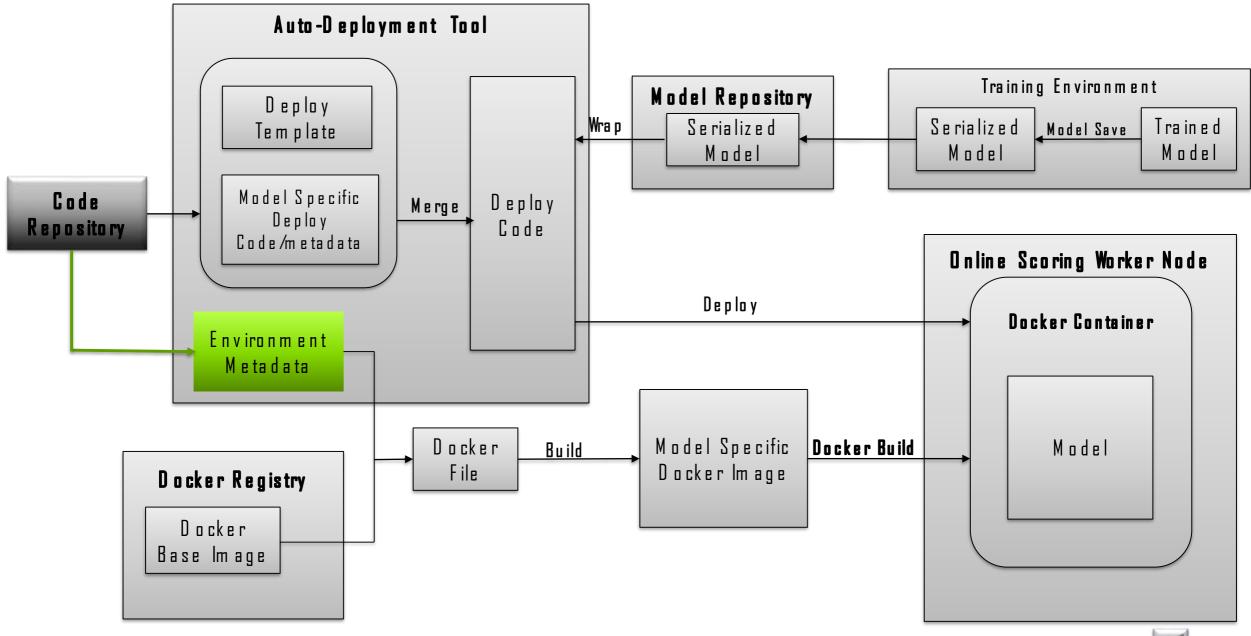
Example: Online Scoring Service Deployment Diagram



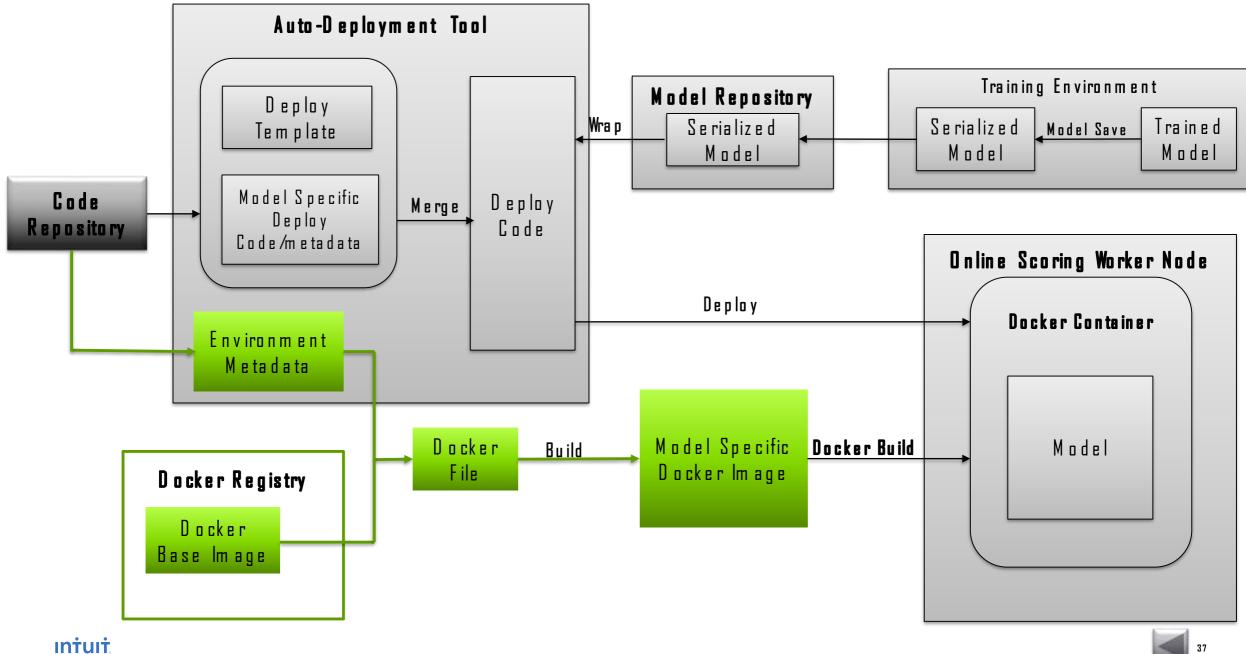
Example: Online Scoring Service Deployment Diagram



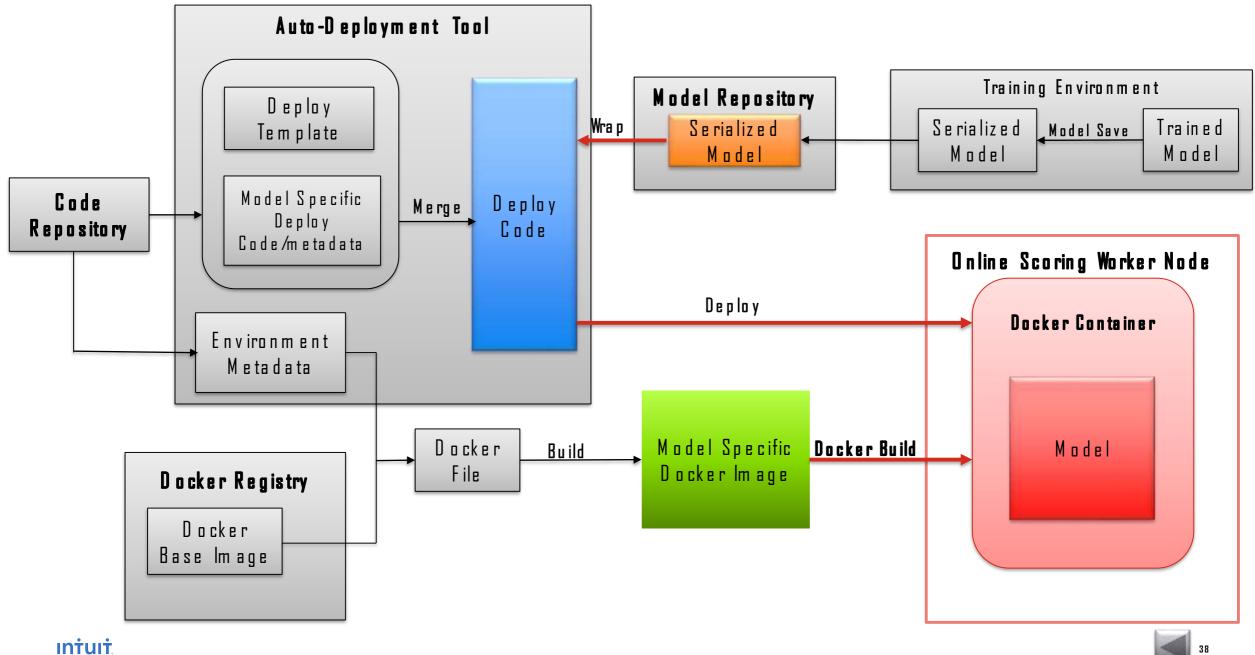
Example: Online Scoring Service Deployment Diagram



Example: Online Scoring Service Deployment Diagram



Example: Online Scoring Service Deployment Diagram



CONTAINERIZATION!

Thank you

Hope (Xinwei) Wang

Email: xinweiwang 3@gmail.com

Linkedin: https://www.linkedin.com/in/xinweiwanglinkedin/

Twitter: <a>BHopeXinwei