

Create and deploy neural networks using Tensor Flow for Image data

Implementing Neural Networks Using TensorFlow

Deep learning has been on the rise in this decade and its applications are so wideranging and amazing that it's almost hard to believe that it's been only a few years in its advancements. And at the core of deep learning lies a basic "unit" that governs its architecture, yes, It's neural networks.

A neural network architecture comprises a number of neurons or activation units as we call them, and this circuit of units serves their function of finding underlying relationships in data. And it's mathematically proven that neural networks can find any kind of relation/function regardless of its complexity, provided it is deep/optimized enough, that is how much potential it has.

Now let's learn to implement a neural network using TensorFlow

Install Tensorflow

Tensorflow is a library/platform created by and open-sourced by Google. It is the most used library for deep learning applications. Now, creating a neural network might not be the primary function of the TensorFlow library but it is used quite frequently for this purpose. So before going ahead let's install and import the TensorFlow module.

Using the pip/conda command to install TensorFlow in your system

terminal/zsh/cmd command

pip

pip install tensorflow --upgrade

conda

conda install -c conda-forge tensorflow

%tensorflow_version 2.x

19CST302&Neural Networks and Deep Learning

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Download and Read the Data

You can use any dataset you want, here I have used the red-wine quality dataset from Kaggle. This is a classification problem, of course, you can learn to apply the concept to other problems. First, download the dataset in your working directory. Now that the data is downloaded let's load the data as data frame.

•	Python3
	import numpy as np
	import pandas as pd
	# be sure to change the file path
	# if you have the dataset in another
	# directly than the working folder
	df = pd.read_csv('winequality-red.csv')
	df.head()

Output:

19CST302&Neural Networks and Deep Learning

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

Data Preprocessing/ Splitting into Train/Valid/Test Set

There are multiple ways to split the data, you can define custom functions or use timestamps if present or use predefined functions like train_test_split in scikit-learn.

Here we have used the sample function to fetch 75% of the data to create the training set and then used the rest of the data for the validation set. You can and should create a test set too but here we have a very small dataset and our primary focus here is to get familiar with the process and train a neural network right?

Now let's divide our dataset.

•	Python3
	import tensorflow as tf
	<pre># 75% of the data is selected train_df = df.sample(frac=0.75, random_state=4)</pre>

19CST302&Neural Networks and Deep Learning

it drops the training data

from the original dataframe

val_df = df.drop(train_df.index)

Something to note is that neural networks generally perform better on data that is in the same range. Like if you have different columns and in 1 column you have values which range from 1-10 but in another, it ranges from 100-1000, it's suggested to first scale all the columns to the same range for better performance.

Now, the most simple method to do that is : value – (min value of the column) / (range of the column)

Python3

calling to (0,1) range

 $max_val = train_df.max(axis=0)$

```
min_val = train_df.min(axis=0)
```

range = max_val - min_val

train_df = (train_df - min_val)/(range)

19CST302&Neural Networks and Deep Learning

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

val_df = (val_df- min_val)/range

Duthon?

Since we're done with scaling our data and creating our training and validation datasets, let's separate it into features i.e inputs and targets, since that's how we're going to pass it to the model.

# now let's separate the targets and labels	
X_train = train_df.drop('quality',axis=1)	
X_val = val_df.drop('quality',axis=1)	
/_train = train_df['quality']	
v_val = val_df['quality']	
# We'll need to pass the shape	
t of features/inputs as an argument	
t in our model, so let's define a variable	
to save it.	
nput_shape = [X_train.shape[1]]	

input_shape

Output:

[11]

This means that we'll be passing 11 features as input to the first layer of our neural network.

Create Model Neural Network

Keras module is built on top of TensorFlow and provides us all the functionality to create a variety of neural network architectures. We'll use the Sequential class in Keras to build our model. First, you can try using the linear model, since the neural network basically follows the same 'math' as regression you can create a linear model using a neural network as follows :

Create a linear Model

Python3

19CST302&Neural Networks and Deep Learning

model = tf.keras.Sequential([

tf.keras.layers.Dense(units=1,input_shape=input_shape)])

after you create your model it's

always a good habit to print out it's summary

model.summary()

Output:

Model: "sequential"		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 1)	12
Total params: 12 Trainable params: 12 Non-trainable params:	0	

But this is basically a linear model, what if your dataset is a bit more complex, and the relations between the features are much more diverse and you want a non-linear model? What do you need? The answer is Activation Functions. This is where neural networks

19CST302&Neural Networks and Deep Learning

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

truly start to shine. We can't go in-depth about activation functions in this article but basically, these add/introduce non-linearity to our model, the more you use them the more complex patterns our model can find.

Creating a Multilayered Neural Network

We'll create a 3 layer network with 1 input layer, 1 hidden layer1 with 64 units, and 1 output layer. We'll use 'relu' activation function in the hidden layers. We'll use the Sequential method in Keras module, which is very often used to create multilayered neural networks. In keras, we have different types of neural network layers and/or transformation layers which you can use to build various types of neural network, but here we have only used 3 Dense layers(in keras.layers) with relu activation function.

Python3

model = tf.keras.Sequential([

tf.keras.layers.Dense(units=64, activation='relu',

input_shape=input_shape),

tf.keras.layers.Dense(units=64, activation='relu'),

tf.keras.layers.Dense(units=1)

19CST302&Neural Networks and Deep Learning

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

1) model.summary() Output: Model: "sequential 1" Layer (type) Output Shape Param dense 1 (Dense) (None, 64) 768 dense_2 (Dense) (None, 64) 4160 dense_3 (Dense) (None, 1) 65 ______ Total params: 4,993 Trainable params: 4,993 Non-trainable params: 0

In Keras after you create your model, you need to 'compile' other parameters for it, like it's shown below. This is kind of like us setting all the parameters for our model.

Python3

adam optimizer works pretty well for

all kinds of problems and is a good starting point

model.compile(optimizer='adam',

19CST302&Neural Networks and Deep Learning

MAE error is good for

numerical predictions

loss='mae')

So we used adam optimizer, and also told the model to compute the mae (mean absolute error) loss.

Training The Model

Since we're done with creating and instantiating our model, now it's time to train it. We'll use the fit method to train our model. This method takes features and targets as targets, and we can also pass the validation_data with it, it will automatically try your model on validation and note the loss metrics. We also provide the batch_size, e what this does is breaks our data into small batches and feed it to our model for training in each epoch, this is very helpful when you have large datasets because it reduces the RAM and CPU consumption on your machine.

Now here we have only trained our model for 15 epochs because our purpose here is to get familiar with the process and not the accuracy itself, but you'll have to increase or decrease the number of epochs on your machine. There are optimization methods that you can use such as early stopping that will automatically stop the training when the model starts overfitting, so you can also try using these, I have provided a link at the bottom if you want to read about it.

Python3

losses = model.fit(X_train, y_train,

19CST302&Neural Networks and Deep Learning

validation_data=(X_val, y_val),

it will use 'batch_size' number

of examples per example

batch_size=256,

epochs=15, # total epoch

)

Output:

19CST302&Neural Networks and Deep Learning

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Epoch 1/15
5/5 [=====================] - 1s 35ms/step - loss: 0.6171 - val_loss: 0.4768
Epoch 2/15
5/5 [======================] - Øs 5ms/step - loss: 0.3901 - val_loss: 0.2569
Epoch 3/15
5/5 [=======================] - 0s 7ms/step - loss: 0.1986 - val_loss: 0.1405
Epoch 4/15
5/5 [=======================] - 0s 7ms/step - loss: 0.1582 - val loss: 0.1698
Epoch 5/15
5/5 [======================] - 0s 6ms/step - loss: 0.1754 - val_loss: 0.1538
Epoch 6/15
5/5 [========================] - 0s 7ms/step - loss: 0.1500 - val loss: 0.1299
Epoch 7/15
5/5 [======================] - 0s 6ms/step - loss: 0.1354 - val_loss: 0.1329
Epoch 8/15
5/5 [=======================] - 0s 7ms/step - loss: 0.1355 - val loss: 0.1287
Epoch 9/15
5/5 [======================] - 0s 7ms/step - loss: 0.1285 - val_loss: 0.1184
Epoch 10/15
5/5 [=======================] - 0s 7ms/step - loss: 0.1227 - val_loss: 0.1169
Epoch 11/15
5/5 [======================] - 0s 7ms/step - loss: 0.1199 - val_loss: 0.1133
Epoch 12/15
5/5 [======================] - 0s 5ms/step - loss: 0.1147 - val_loss: 0.1091
Epoch 13/15
5/5 [=======================] - 0s 7ms/step - loss: 0.1114 - val_loss: 0.1076
Epoch 14/15
5/5 [=======================] - 0s 6ms/step - loss: 0.1082 - val_loss: 0.1073
Epoch 15/15
5/5 [==================] - 0s 12ms/step - loss: 0.1072 - val_loss: 0.1060

Here we have only trained for 15 epochs but you should definitely train for more and try changing the model itself.

Generate Predictions and Analyze Accuracy

Since we have completed the training process, let's actually try using it to predict the 'wine quality'. For making predictions we'll use the predict function of the model object. Let's only give three examples as inputs and try to predict the wine quality for the 3.

• Python3

19CST302&Neural Networks and Deep Learning

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

this will pass the first 3 rows of features

of our data as input to make predictions

model.predict(X_val.iloc[0:3, :])

Output:

array([[0.40581337],

[0.5295989],

[0.3883106]], dtype=float32)

Now, let's compare our predictions with the target value.

Python3

y_val.iloc[0:3]

Output:

- 0 0.4
- 9 0.4
- 12 0.4

Name: quality, dtype: float64

19CST302&Neural Networks and Deep Learning

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

As we can see our predictions are pretty close to the real value i.e 0.4 in all three cases. You can define another function to convert the prediction into an integer to predict quality on a scale of 1 to 10 for better understanding, but that's a trivial thing, the main thing is for you to understand the whole process depicted here.

Visualize Training Vs Validation Loss

You can analyze the loss and figure out if it is overfitting or not easy and then take appropriate measures accordingly.

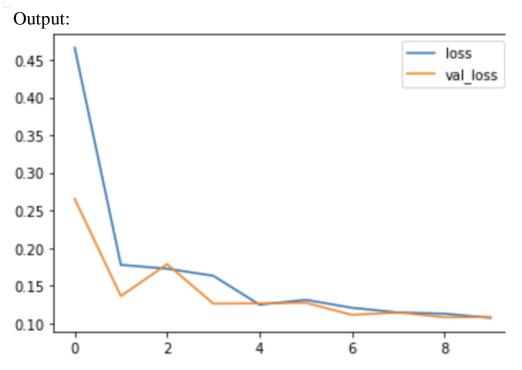
story)		
	story)	story)

19CST302&Neural Networks and Deep Learning

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

plot it to visualize our model training

loss_df.loc[:,['loss','val_loss']].plot()



Key point to note while analyzing the accuracy/error for your model is :

Your loss function continuously decreasing, obviously, but that might not be the case for the validation dataset, and at some point, your model will overfit the data and the validation error will start increasing instead of decreasing. So, you can stop at the epoch where the validation loss seems to be increasing. You can also try some other optimization algorithms like early stopping (callback in Keras). You can read about it here.

19CST302&Neural Networks and Deep Learning