
Intermediate SQL

1 Relational Languages
Edgar Codd published a major paper on relational models in the early 1970s. Originally, he only defined

the mathematical notation for how a DBMS could execute queries on a relational model DBMS.

The user only needs to specify the result that they want using a declarative language (i.e., SQL). The DBMS

is responsible for determining the most efficient plan to produce that answer.

Relational algebra is based on sets (unordered, no duplicates). SQL is based on bags (unordered,

allows duplicates).

2 SQL History
Declarative query lanaguage for relational databases. It was originally developed in the 1970s as part of the

IBM System R project. IBM originally called it “SEQUEL” (Structured English Query Language). The name

changed in the 1980s to just “SQL” (Structured Query Language).

The language is comprised of different classes of commands:

1. Data Manipulation Language (DML): SELECT, INSERT, UPDATE, and DELETE statements.

2. Data Definition Language (DDL): Schema definitions for tables, indexes, views, and other objects.

3. Data Control Language (DCL): Security, access controls.

SQL is not a dead language. It is being updated with new features every couple of years. SQL-92 is the

minimum that a DBMS has to support to claim they support SQL. Each vendor follows the standard to a

certain degree but there are many proprietary extensions.

3 Aggregates
An aggregation function takes in a bag of tuples as its input and then produces a single scalar value as its

output. Aggregate functions can only be used in SELECT output list.

Example: Get # of students with a ‘@cs’ login. The following three queries are equivalent:

Can use multiple aggregates within a single SELECT statement:

SELECT COUNT(*) FROM student WHERE login LIKE '%@cs';

SELECT COUNT(login) FROM student WHERE login LIKE '%@cs';

SELECT COUNT(1) FROM student WHERE login LIKE '%@cs';

https://en.wikipedia.org/wiki/Edgar_F._Codd

Figure 1: Example database used for lecture

Some aggregate functions support the DISTINCT keyword:

Output of other columns outside of an aggregate is undefined (e.cid is undefined below)

Thus, other columns outside aggregate must be aggregated or used in a GROUP BY command:

HAVING: Filters output results after aggregation. Like a WHERE clause for a GROUP BY

CREATE TABLE student (
sid INT PRIMARY KEY,
name VARCHAR(16),
login VARCHAR(32) UNIQUE,
age SMALLINT,
gpa FLOAT

);

CREATE TABLE course (
cid VARCHAR(32) PRIMARY KEY,
name VARCHAR(32) NOT NULL

);

CREATE TABLE enrolled (
sid INT REFERENCES student (sid),
cid VARCHAR(32) REFERENCES course (cid),
grade CHAR(1)

);

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs';

SELECT COUNT(DISTINCT login)

FROM student WHERE login LIKE '%@cs';

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid;

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid
GROUP BY e.cid;

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid

HAVING avg_gpa > 3.9;

4 String Operations
The SQL standard says that strings are case sensitive and single-quotes only. There are functions to

ma- nipulate strings that can be used in any part of a query.

Pattern Matching: The LIKE keyword is used for string matching in predicates.

• “%” matches any substrings (including empty).

• “ ” matches any one character.

Concatenation: Two vertical bars (“||”) will concatenate two or more strings together into a single string.

5 Output Redirection
Instead of having the result a query returned to the client (e.g., terminal), you can tell the DBMS to store

the results into another table. You can then access this data in subsequent queries.

• New Table: Store the output of the query into a new (permanent) table.

• Existing Table: Store the output of the query into a table that already exists in the database. The

target table must have the same number of columns with the same types as the target table, but

the names of the columns in the output query do not have to match.

6 Output Control
Since results SQL are unordered, you have to use the ORDER BY clause to impose a sort on tuples:

You can use multiple ORDER BY clauses to break ties or do more complex sorting:

You can also use any arbitrary expression in the ORDER BY clause:

By default, the DBMS will return all of the tuples produced by the query. You can use the LIMIT clause to
restrict the number of result tuples:

INSERT INTO CourseIds (SELECT DISTINCT cid FROM enrolled);

SELECT sid FROM enrolled WHERE cid = '15-721'

ORDER BY grade DESC;

SELECT DISTINCT cid INTO CourseIds FROM enrolled;

SELECT sid FROM enrolled WHERE cid = '15-721'

ORDER BY grade DESC, sid ASC;

SELECT sid FROM enrolled WHERE cid = '15-721'
ORDER BY UPPER(grade) DESC, sid + 1 ASC;

SELECT sid, name FROM student WHERE login LIKE '%@cs'
LIMIT 10;

Can also provide an offset to return a range in the results:

SELECT sid, name FROM student WHERE login LIKE '%@cs'
LIMIT 10 OFFSET 20;

Unless you use an ORDER BY clause with a LIMIT, the DBMS could produce different tuples in the result
on each invocation of the query because the relational model does not impose an ordering.

7 Nested Queries
Invoke queries inside of other queries to execute more complex logic within a single query. The

scope of outer query is included in inner query (i.e. inner query can access attributes from outer

query), but not the other way around.

Inner queries can appear in almost any part of a query:

1. SELECT Output Targets:

2. FROM Clause:

3. WHERE Clause:

Example: Get the names of students that are enrolled in ‘15-445’.

Note that sid has different scope depending on where it appears in the query.

Nest Query Results Expressions:

• ALL: Must satisfy expression for all rows in sub-query.
• ANY: Must satisfy expression for at least one row in sub-query.
• IN: Equivalent to =ANY().

• EXISTS: At least one row is returned.

8 Window Functions
Performs “moving” calculation across set of tuples. Like an aggregation but it still returns the original
tuples.

Functions: The window function can be any of the aggregation functions that we discussed

above. There are also also special window functions:

1. ROW NUMBER: The number of the current row.

2. RANK: The order position of the current row.

SELECT name
FROM student AS s, (SELECT sid FROM enrolled) AS e

WHERE s.sid = e.sid;

SELECT (SELECT 1) AS one FROM student;

SELECT name FROM student
WHERE sid IN (SELECT sid FROM enrolled);

SELECT name FROM student
WHERE sid IN (SELECT sid FROM enrolled WHERE cid = '15-445');

Grouping: The OVER clause specifies how to group together tuples when computing the window
function. Use PARTITION BY to specify group.

SELECT cid, sid, ROW_NUMBER() OVER (PARTITION BY cid)

FROM enrolled ORDER BY cid;

	1 Relational Languages
	2 SQL History
	3 Aggregates
	4 String Operations
	5 Output Redirection
	6 Output Control
	7 Nested Queries
	Nest Query Results Expressions:

	8 Window Functions

