Control Engineering I

Signal Flow Graphs

Introduction

- Alternative method to block diagram representation, developed by Samuel Jefferson Mason.
- Advantage: the availability of a flow graph gain formula, also called Mason's gain formula.
- A signal-flow graph consists of a network in which nodes are connected by directed branches.
- It depicts the flow of signals from one point of a system to another and gives the relationships among the signals.

Fundamentals of Signal Flow Graphs

- Consider a simple equation below and draw its signal flow graph: y = ax
- The signal flow graph of the equation is shown below;

- Every variable in a signal flow graph is designed by a Node.
- Every transmission function in a signal flow graph is designed by a Branch.
- Branches are always **unidirectional**.
- The arrow in the branch denotes the **direction** of the signal flow.

Signal-Flow Graph Models

Signal-Flow Graph Models

 r_1 and r_2 are inputs and x_1 and x_2 are outputs

 $a_{11} \cdot x_1 + a_{12} \cdot x_2 + r_1 = x_1$

$a_{21} \cdot x_1 + a_{22} \cdot x_2 + r_2 = x_2$

Signal-Flow Graph Models

Construct the signal flow graph for the following set of simultaneous equations.

$$x_2 = A_{21}x_1 + A_{23}x_3 \qquad x_3 = A_{31}x_1 + A_{32}x_2 + A_{33}x_3 \qquad x_4 = A_{42}x_2 + A_{43}x_3$$

- There are four variables in the equations (i.e., x₁,x₂,x₃,and x₄) therefore four nodes are required to construct the signal flow graph.
- Arrange these four nodes from left to right and connect them with the associated branches.

Terminologies

- An input node or source contain only the outgoing branches. i.e., X₁
- An output node or sink contain only the incoming branches. i.e., X_4
- A **path** is a continuous, unidirectional succession of branches along which no node is passed more than ones. i.e.,

X_1 to X_2 to X_3 to X_4 X_1 to X_2 to X_4 X_2 to X_3 to X_4

- A forward path is a path from the input node to the output node. i.e.,
 - X_1 to X_2 to X_3 to X_4 , and X_1 to X_2 to X_4 , are forward paths.
- A feedback path or feedback loop is a path which originates and terminates on
 - the same node. i.e.; X_2 to X_3 and back to X_2 is a feedback path.

Terminologies

- A self-loop is a feedback loop consisting of a single branch. i.e.; A₃₃ is a self loop.
- The gain of a branch is the transmission function of that branch.
- The path gain is the product of branch gains encountered in traversing a path.
 - i.e. the gain of forwards path X_1 to X_2 to X_3 to X_4 is $A_{21}A_{32}A_{43}$
- The loop gain is the product of the branch gains of the loop. i.e., the loop gain
 - of the feedback loop from X_2 to X_3 and back to X_2 is $A_{32}A_{23}$

- a) Input node.
- b) Output node.
- c) Forward paths.
- d) Feedback paths (loops).
- e) Determine the loop gains of the feedback loops.
- f) Determine the path gains of the forward paths.
- g) Non-touching loops

• There are two forward path gains;

1. $G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)G_7(s)$

2. $G_1(s)G_2(s)G_3(s)G_4(s)G_6(s)G_7(s)$

There are four loops

- Nontouching loop gains;
- **1.** $[G_2(s)H_1(s)][G_4(s)H_2(s)]$
- **2.** $[G_2(s)H_1(s)][G_4(s)G_5(s)H_3(s)]$
- **3.** $[G_2(s)H_1(s)][G_4(s)G_6(s)H_3(s)]$

- a) Input node.
- b) Output node.
- c) Forward paths.
- d) Feedback paths.
- e) Self loop.
- f) Determine the loop gains of the feedback loops.
- g) Determine the path gains of the forward paths.

Input and output Nodes

(c) Forward Paths

(d) Feedback Paths or Loops

X_2 to X_7 to X_5 to X_4 to X_3 to X_2

(d) Feedback Paths or Loops

(e) Self Loop(s)

(f) Loop Gains of the Feedback Loops

(g) Path Gains of the Forward Paths

