
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

19ITT101-PROGRAMMING IN C AND DATA STRUCTURES
I YEAR - II SEM

UNIT 4 – STACK AND QUEUE

TOPIC 7 – Postfix expression evaluation

Postfix Expression

A B +

Postfix Expression

• Infix expression is the form AOB

– A and B are numbers or also infix expression

– O is operator (+, -, *, /)

• Postfix expression is the form ABO

– A and B are numbers or also postfix expression

– O is operator (+, -, *, /)

From Postfix to Answer

• The reason to convert infix to postfix expression

is that we can compute the answer of postfix

expression easier by using a stack.

From Postfix to Answer

Ex: 10 2 8 * + 3 -

•First, push(10) into the stack

10

From Postfix to Answer

Ex: 10 2 8 * + 3 -

•Then, push(2) into the stack

2

10

From Postfix to Answer

Ex: 10 2 8 * + 3 -

• Push(8) into the stack

8

2

10

From Postfix to Answer

Ex: 10 2 8 * + 3 -

•Now we see an operator *, that means we can get

an new number by calculation

8

2

10

From Postfix to Answer

8

2

10

Ex: 10 2 8 * + 3 -

•Now we see an operator *, that means we can get

an new number by calculation

•Pop the first two numbers

2 * 8 = 16

From Postfix to Answer

16

10

Ex: 10 2 8 * + 3 -

•Now we see an operator *, that means we can get

an new number by calculation

•Push the new number back

2 * 8 = 16

From Postfix to Answer

16

10

Ex: 10 2 8 * + 3 -

•Then we see the next operator + and perform

the calculation

10 ++ 16 = 26

From Postfix to Answer

Ex: 10 2 8 * + 3 -

•Then we see the next operator + and perform the

calculation

•Push the new number back

26

16 = 2610 +

From Postfix to Answer

Ex: 10 2 8 * + 3 -

• We see the next number 3

• Push (3) into the stack

3

26

Compute the Answer

Ex: 10 2 8 * + 3 -

• The last operation

326 - = 23

From Postfix to Answer

Ex: 10 2 8 * + 3 -

• The last operation

= 23

answer!23
326 -

From Postfix to Answer

• Algorithm: maintain a stack and scan the postfix

expression from left to right

– If the element is a number, push it into the stack

– If the element is a operator O, pop twice and get A and

B respectively. Calculate BOA and push it back to the

stack

– When the expression is ended, the number in the stack

is the final answer

Transform Infix to Postfix

• Now, we have to design an algorithm to

transform infix expression to postfix

Transform Infix to Postfix

• Observation 1: The order of computation depends on

the order of operators

– The parentheses must be added according to the priority of

operations.

– The priority of operator * and / is higher then those of

operation + and –

– If there are more than one equal-priority operators, we

assume that the left one’s priority is higher than the right

one’s

• This is called left-to-right parsing.

Transform Infix to Postfix

• Observation 1: The order of computation depends
on the order of operators (cont.)

– For example, to add parentheses for the expression 10 +
2 * 8 - 3,

– we first add parenthesis to 2 * 8 since its priority is
highest in the expression.

– Then we add parenthesis to 10 + (2 * 8) since the
priorities of + and – are equal, and + is on the left of -.

– Finally, we add parenthesis to all the expression and get
((10 + (2 * 8)) - 3).

Transform Infix to Postfix

• Observation 1: The order of computation depends

on the order of operators (cont.)

– The computation order of expression ((10 + (2 * 8)) - 3)

is:

• 2 * 8 = 16

• 10 + 16 = 26

• 26 – 3 = 23

€ ((10 + 16) -3)

€ (26 – 3)

€ 23

Transform Infix to Postfix

• Simplify the problem, how if there are only +/-

operators?

• Simplify the problem, how if there are only +/-

operators?

• The leftmost operator will be done first

– Ex: 10 - 2 + 3 € 8 + 3 € 11

Transform Infix to Postfix

• Simplify the problem, how if there are only +/-

operators?

• Algorithm: maintain a stack and scan the postfix

expression from left to right

– When we get a number, output it

– When we get an operator O, pop the top element in the

stack if the stack is not empty and then push(O) into

the stack

Transform Infix to Postfix

• Simplify the problem, how if there are only +/-
operators?

• Algorithm: maintain a stack and scan the postfix
expression from left to right

– When we get a number, output it

– When we get an operator O, pop the top element in the
stack if the stack is not empty and then push(O) into
the stack

– When the expression is ended, pop all the operators
remain in the stack

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3

•We see the first number 10, output it

10

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3

•We see the first operator

+, push(+) into the stack because at this moment

the stack is empty

+

10

Transform Infix to Postfix

• Ex: 10 + 2 - 8 + 3

• We see the number 2, output it

+

10 2

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3

•We see the operator -, pop the operator + and push(-

) into the stack

-

10 2 +

Transform Infix to Postfix

• Ex: 10 + 2 - 8 + 3

• We see the number 8, output it

-

10 2 + 8

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3

•We see the operator +, pop the operator - and

push(+) into the stack

+

10 2 + 8 -

Transform Infix to Postfix

• Ex: 10 + 2 - 8 + 3

• We see the number 3, output it

+

10 2 + 8 - 3

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3

•We come to the end of the expression, then we pop

all the operators in the stack

10 2 + 8 – 3 +

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3

•When we get an operator, we have to push it into

the stack and pop it when we see the next operator.

•The reason is, we have to “wait” for the second

operand of the operator

Transform Infix to Postfix

• How to solve the problem when there are

operators +, -, *, / ?

Transform Infix to Postfix

• Observation 2: scan the infix expression from left

to right, if we see higher- priority operator after

lower-priority one, we know that the second

operand of the lower-priority operator is an

expression

– Ex: a + b * c = a + (b * c) € a b c * +

– That is, the expression b c * is the second operand of

the operator “+”

Transform Infix to Postfix

• So, we modify the algorithm to adapt the

situation

Transform Infix to Postfix

• Algorithm: maintain a stack and scan the postfix

expression from left to right

– When we get a number, output it

– When we get an operator O, pop the top element in the

stack until there is no operator having higher priority

then O and then push(O) into the stack

– When the expression is ended, pop all the operators

remain in the stack

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3

•We see the first number 10, output it

10

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3

• We see the first operator

+, push it into the stack

+

10

Transform Infix to Postfix

• Ex: 10 + 2 * 8 - 3

• We see the number 2, output it

+

10 2

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3

•We see the operator *, since the top operator in

the stack, +, has lower priority then *, push(*)

*

+

10 2

Transform Infix to Postfix

`

• Ex: 10 + 2 * 8 - 3

• We see the number 8, output it

*

+

10 2 8

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3

•We see the operator -, because its priority is lower then *,

we pop. Also, because + is on the left of it, we pop +, too.

Then we push(-)

-

10 2 8 * +

Transform Infix to Postfix

• Ex: 10 + 2 * 8 - 3

• We see the number 3, output it

-

10 2 8 * + 3

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3

•Because the expression is ended, we pop all the

operators in the stack

10 2 8 * + 3 -

Transform Infix to Postfix

