
 

  Call by value  

 Call by reference 
 

CALL BY VALUE: 

 In call by value method, the value of the variable is passed to the function as parameter. 
 The value of the actual parameter can not be modified by formal parameter. 
 Different Memory is allocated for both actual and formal parameters. Because, value of actual 

parameter is copied to formal parameter. 

 

 

 EXAMPLE PROGRAM FOR C FUNCTION (USING CALL BY VALUE):  

 
1 #include<stdio.h> 

2 // function prototype, also called function declaration 

3 void swap(int a, 

int b); 4 

5 int main() 

6 { 

7 int m = 22, n = 44; 

8 // calling swap function by value 

9 printf(" values before swap m = %d \nand n = %d", m, n); 

10 swap(m, n); 

11 } 

12 

13 void swap(int a, int b) 

14 { 

15 int tmp; 

16 tmp = a; 

17 a = b; 

18 b = tmp; 

19 printf(" \nvalues after swap m = %d\n and n = %d", a, b); 

 

 

In this program, the values of the variables “m” and “n” are passed to the function “swap”. 
These values are copied to formal parameters “a” and “b” in swap function and used. 

HOW TO CALL C FUNCTIONS IN A PROGRAM? 
There are two ways that a C function can be called from a program. They are, 
 
 



20 } 

 COMPILE 
& RUN 

OUTPUT: 

values 

and 

values 

and n = 

22 

befo

re 

after 

 

n 

swa

p 

swa

p 

m 

= 

m 

= 

 

= 

22 

44 

44 

 

2. CALL BY REFERENCE: 
 In call by reference method, the address of the variable is passed to the 

function as parameter. 

 The value of the actual parameter can be modified by formal parameter. 

  Same memory is used for both actual and formal parameters since only 

address is used by both parameters. 

  
EXAMPLE PROGRAM FOR C FUNCTION (USING CALL BY 
REFERENCE): 
 In this program, the address of the variables “m” and “n” are passed to the 

function “swap”. 

 These values are not copied to formal parameters “a” and “b” in swap 

function. 

 Because, they are just holding the address of those variables. 
 This address is used to access and change the values of the variables. 

1 #include<stdio.h> 

2 // function prototype, also called function declaration 

3 void swap(int *a, 

int *b); 4 

5 int main() 

6 { 

7 int m = 22, n = 44; 

8 // calling swap function by reference 

9 printf("values before swap m = %d \n and n = %d",m,n); 

10 swap(&m, &n); 

11 } 

12 

13 void swap(int *a, int *b) 

14 { 



15 

16 

17 

18 

19 

20 

} 

int tmp; 

tmp = 

*a; 

*a = *b; 

*b = tmp; 

printf("\n values after swap a = %d \nand b = %d", *a, *b); 

 

  COMPILE 
& RUN 

 OUTPUT: 

 values before swap 

m = 22 and n 

values

 aft

er and b = 22 

 

 

swap 

 

= 

a 

 

 

= 

 

44 

44 

 

Difference between Call by Value and Call by Reference 

Functions can be invoked in two ways: Call by Value or Call by Reference. These 

two ways are generally differentiated by the type of values passed to them as 

parameters. 

The parameters passed to function are called actual parameters whereas the 

parameters received by function are called formal parameters. 

Call By Value: In this parameter passing method, values of actual parameters are 

copied to function’s formal parameters and the two types of parameters are stored 

in different memory locations. So any changes made inside functions are not 

reflected in actual parameters of caller. 



Call by Reference: Both the actual and formal parameters refer to same locations, 

so any changes made inside the function are actually reflected in actual parameters 

of caller. 

 

While calling a function, instead of passing the 

values of 

 

While calling a function, we pass 

values of variables to it. Such 

functions are known as “Call By 

Values”. 

variables, we pass address of 

variables(location of variables) to the 

function known as “Call By 

References. 

In this method, the value of each 

variable in calling function is 

copied into corresponding dummy 

variables of the called function. 

In this method, the address of actual 

variables in the calling function are 

copied into the dummy variables of 

the called function. 

With this method, the changes 

made to the dummy variables in 

the called function have no 

effect on the values of actual 

variables in the calling function. 

With this method, using addresses we 

would have an access to the actual 

variables and hence we would be able 

to manipulate them. 

CALL BY VALUE CALL BY REFERENCE 



  
 



In call by values we cannot alter the values of actual variables 

through function calls. 



In call by reference we can alter the values of variables 

through function calls. 

 


	EXAMPLE PROGRAM FOR C FUNCTION (USING CALL BY VALUE):

