Types of functions

Types of functions:
A function may belong to any one of the following categories:

1a Functions with no arguments and no return values.
2. Functions with arguments and no return values.

3. Functions with arguments and return values.

4. Functions that return multiple values.

8. Functions with no arguments and return values.

Example of a simple function to add two integers.

ylain

1 #include<stdio.h>
2. #include<conio.h>
3. woid add(int x,int y)
a. {
5. dint result;
6. result = x+y;
!?. printf("Sum of %d and ¥d is %d.\n\n",x,y,result);
} - #include <stdio.h>
- void main() #include<conio .h>
1e. {
11. clrscr(); void add(int x,int y)
12. add{1@,15); Used Defined ink resit:
13. add(55,64); R result = x+y;
14. add(168,325); printf("Sum of %d and %d is %d.\n\n",x,y,resuit);
15. getch(); }
A6 ¥ void main()
{
clrser();
add(10,15);
e & add(55,64);
add(168,325);

ﬁetl:h(}:

Program Qutput

- - R
| Twbo o+ DE -0
N o 0800 B S W -

o UM of 18 and 15 l &9 ¢

Sum of 55 and 64 1 119.

um of 168 and 325 15 49

Types of Function in C Programming Languages:

five types of functions and they are:
1. Functions with no arguments and no return values.

2 Functions with arguments and no return values.
3. Functions with arguments and return values.
dq Functions that return multiple values.

3. Functions with no arguments and return values.

1. Functions with no arguments and no return value.
A C function without any arguments means you cannot pass data (values like int, char eic) to the called

function. Similarly, function with no return type does not pass back data to the calling function. It is one of
the simplest types of function in C. This type of function which does not return any value cannot be used in
an expression it can be used only as independent statement. Let's have an example to illustrate this.

1. #include<stdio.h> 1. printf("n"):

2. #include<conio.h> 12.)

3. void printline() 13. void main()

4. | 14. |

2. int 1; 19. clrscr();

B. printf("\n"): 16. printf("Welcome to function in C*);
7. for(i=0;i<30;i++) 17. printline();

8. { 18. printf{"Function easy to learn.");
9. printf("-"); 19. printline();

10. } 20. getch();

21.)

| Tubo e -[0[x]
delcome to function in C
Control Pa“""g E”II"1. i0n eaty t“ .1"-“.1‘“
void functionl) I— void function2()
{ No Argument Passing (
funct'unz“' ‘llllllllll.llllllll
1" Ll LLLL Ll L
No Return Value }
}
Control Passing
Calling Function Called Function)
Output of above program.

Source Code Explanation:

The above C program example illustrates that how to declare a function with no argument and no return
type. | am going to explain only important lines only because this C program example is for those who are

above the beginner level.

Line 3-12: This C code block is a user defined function (UDF) whose task is to print a horizontal line. This is
a simple function and a basic programmer can understand this. As you can see in line no. 7 | have declared

a “for loop”™ which loops 30 time and prints “-" symbol continuously.

Line 13-21: These line are “main()” function code block. Line no. 16 and 18 simply prints two different
messages. And line no. 17 and 18 calls our user defined function “printline()". You can see output this

program below
2. Functions with arguments and no return value.

In our previous example what we have noticed that “main()” function has no control over the UDF
“printfline()", it cannot control its output. Whenever "main()” calls “printline()". it simply prints line every time.

So the result remains the same.

A C function with arguments can performn much better than previous function type. This type of function can
accept data from calling function. In other words, you send data to the called function from calling function
but wou cannot send result data back to the calling function. Rather, it displays the result on the terminal. But
we can control the output of function by providing various values as arguments. Let’s hawve an example to

get it better.

1. #include=stdio h= .
2. #include=<conio.h= Contral Passing
3. void add(int x, inty) void function1 () 7] Vvoldfunction2(int
4 {) { o ¥, int Yl‘

. =
5. imtresult: ™Y eerressersessenne Argument Passing {
6' rEEU”:x-‘LY‘ fun{t[ﬁl‘lz{lﬂr 2'}}: EEEREEEEEE RSN EEEREEE N ——
7. printf{"Sum of %d and %d is %d.\n\n" x,y,result); Ne Return Value }
8) } L
9. void main() " Contrel Passing
10, {

) Calling Function Callad Fungtion

11. clrser{);
12. add(30,15); Logic of the function with arguments and no return value.

13. add(63.49);
14. add(952,321);
15. getch();

16. }

Source Code Explanation:
This program simply sends two integer arguments to the UDF “add()” which, further, calculates its sum and
stores in another variable and then prints that value. So simple program to understand.

Line 3-8: This C code block is "add()" which accepts two integer type arguments. This UDF also has a
integer variable “result” which stores the sum of values passed by calling function (in this example “main()").
And line no. 7 simply prints the result along with argument variable values.

Line 9-16: This code block is a "main()” function but only line no. 12, 13, 14 is important for us now. In these
three lines we have called same function “add()" three times but with different values and each function call
gives different output. So, you can see, we can control function’s output by providing different integer
parameters which was not possible in function type 1. This is the difference

3. Functions with arguments and return value.

This type of function can send arguments (data) from the calling function to the called function and wait for

the result to be returned back from the called function back to the calling function. And this type of function is

mostly used in programming world because it can do two way communications; it can accept data as

arguments as well as can send back data as return value. The data returned by the function can be used

later in our program for further calculations. ‘
1. #include<stdio.h> 1 Control Passing _ . 7
2. #include<conio.h> ‘ void function1) :;t it e
' int % int y! {
j. int add(int x, int y) [— e Rt Passine > {
' { result = function2 (10,
B. int result; 20, return|z);
' *
6. result=x+y; Returning Value
7. retumn{result); } e }
8. b } Control Passing
10. { Calling Function Called Function
1. intz Logic of the function with arguments and return value.
12, clrscr(); . Tuiba Co s IDE
13. =z =add(952,321); Res :
14. printf("Result %d.\n\n",add(30,55));
15. printf{("Result %d.\n\n",z);
16. getch();
17. } Output of the above program.

Source Code Explanation:
This program sends two integer values (x and y) to the UDF “add()", *add()" function adds these two values
and sends back the result to the calling function (in this program to “*main()" function). Later result is printed

on the terminal.
Line Mo. 3-8: Look line no. 3 carefully, it starts with int. This int is the return type of the function, means it

can only return integer type data to the calling function. If you want any function to return character values
then you must change this to char type. On line no. 7 you can see return statement, retumn is a keyword and
in bracket we can give values which we want to returmn. You can assign any integer value to experiment with
this returm which ultimately will change its output. Do experiment with all you program and don't hesitate.
Line No. 9-17: In this code block only line no. 13, 14 and 15 is important. We have declared an integer “z"
which we used in line no. 13. Why we are using integer variable “z" here? You know that our UDF “add()"
returns an integer value on calling. To store that value we have declared an integer value. We have passed
8952, 321 to the “add()" function, which finally return 1273 as result. This value will be stored in “z" integer
variable. Now we can use “z" to print its value or to other function.

You will also notice some strange statement in line no. 14. Actually line no. 14 and 15 does the same job, in
line no. 15 we have used an extra variable whereas on line no. 14 we directly printed the value without using

=g avira variabla Thie was cimnly o ehowe venn ey wee can nres function i differaent wave

4. Functions with no arguments but returns value.

We may need a function which does not take any argument but only retums values to the calling function
then this type of function is useful. The best exampie of this type of function is “getchar()" library function

which is declared in the header file “stdio.h". We can declare a similar library function of own. Take a look

1 #include<stdio.h> Functions with no arguments and return values.
2. #include<conio.h>
3 int send() Control Passing Al
4 { void function1() int function2 ()
5. int no1; { {
___________________ CTTTTTTTTTT T T =
6 printf("Enter ano : *); No Argument Passing |~ et
- - result = function2 (); return(z);
7 scanf("%d",&no1);
8. retum(no1); } " Returning Value) -
9. }
10. void main() e Control Passing
1. {
12. intz Calling Funstion Called Funstion
13 cirscr();] :
14. z=send(), Enter a no : 5
printf("\nYou entered : %d.", 2); You entered : S._
. getch();
17. }

Source Code Explanation:
In this program we have a UDF which takes one integer as input from keyboard and sends back to the
calling function. This is a very easy code to understand if you have followed all above code explanation. So |
am not going to explain this code. But if you find difficulty please post your problem and | will solve that.

5. Functions that return multiple values.

So far, we have learned and seen that in a function, returmn statement was able to return only single value
That is because; a return statement can return only one value. But if we want to send back more than one
value then how we could do this?

We have used arguments to send values to the called function, in the same way we can also use arguments
to send back information to the calling function. The arguments that are used to send back data are called
Output Parameters.

It is a bit difficult for novice because this type of function uses pointer. Let's see an example:
#include<stdio.h>

#include<conio.h>

void calc(int x, int y, int *add, int *sub) BT ‘:EL"J‘
{ -

*add = x+y;

*sub = x-y;

}

void main()

{

0 int a=20, b=11, p,q;
clrscr();

— R L U

anlk
-—d

2. calc(a,b,&p.&q);
13. printf("Sum = %d, Sub = %d",p.q);
14. getch();

15.)

Output of the above program.

Source Code Explanation:
Logic of this program is that we call UDF “calc()" and sends argument then it adds and subtract that two

values and store that values in their respective pointers. The **" is known as indirection operator whereas
“&" known as address operator. We can get memory address of any variable by simply placing “&" before
variable name. In the same way we get value stored at specific memory location by using ™" just before
memaory address. These things are a bit confusing but when you will understand pointer then these thing will
become clearer.

Line no. 3-7: This UDF function is different from all above UDF because it implements pointer. | know line
no. 3 looks something strange, let's have a clear idea of it. “Calc()" function has four arguments, first two
arguments need no explanation. Last two arguments are integer pointer which works as output parameters
(arguments). Pointer can only store address of the value rather than value but when we add * to pointer
variable then we can store value at that address.

Line no. 8-15: When we call “calc{)" function in the line no. 12 then following assignments occurs. Value of
variable “a" is assigned to *x”, value of variable *b" is assigned fo “y’, address of “p” and °q" fo “add” and
“sub" respectively. In line no. 5 and 6 we are adding and subtracting values and storing the result at their
respective memory location. This is how the program works.

